Free Access
Issue
ESAIM: COCV
Volume 15, Number 4, October-December 2009
Page(s) 969 - 993
DOI https://doi.org/10.1051/cocv:2008057
Published online 20 August 2008
  1. K.J. Åström and B. Wittenmark, Computer-Controlled Systems: Theory and Design. Third edition, Tsinghua University Press (2002). [Google Scholar]
  2. R. Bhatia, Matrix Analysis. Springer Verlag (1996). [Google Scholar]
  3. P.E. Caines and J.F. Zhang, On the adaptive control of jump parameter systems via nonlinear filtering. SIAM J. Contr. Opt. 33 (1995) 1758–1777. [CrossRef] [Google Scholar]
  4. Y.S. Chow and H. Teicher, Probability Theory: Independence, Interchangeability, Martingales. Springer Verlag (1978). [Google Scholar]
  5. E.A. Coddington and R. Carlson, Linear Ordinary Differential Equations. SIAM (1997). [Google Scholar]
  6. F. Dufour and P. Betrand, Stabilizing control law for hybrid models. IEEE Trans. Automat. Contr. 39 (1994) 2354–2357. [CrossRef] [Google Scholar]
  7. R.J. Elliott and V. Krishnamurthy, Exact finite dimensional filters for maximum likelihood parameter estimation of continuous time linear-Gaussian systems. SIAM. J. Contr. Opt. 35 (1997) 1908–1923. [CrossRef] [Google Scholar]
  8. R.J. Elliott and V. Krishnamurthy, New finite dimensional filters for parameter estimation of discrete time linear Gaussian models. IEEE. Trans. Automat. Contr. 44 (1999) 938–951. [CrossRef] [Google Scholar]
  9. L.S. Hu, Y.-Y. Cao and H.-H. Shao, Constrained robust sampled-data control for nonlinear uncertain systems. Int. J. Robust Nonlinear Contr. 12 (2002) 447–464. [CrossRef] [Google Scholar]
  10. M.Y. Huang and L. Guo, Stabilization of stochastic systems with hidden Markov jumps. Science in China (Series F) 44 (2001) 104–118. [Google Scholar]
  11. A. Ilchmann and S. Townley, Adaptive sampling control of high-gain stabilizable systems. IEEE Trans. Automat. Contr. 44 (1999) 1961–1966. [CrossRef] [Google Scholar]
  12. Y.D. Ji and H.J. Chizeck, Controllability, stabilizability and continuous-time Markovian jump linear quadratic control. IEEE Trans. Automat. Contr. 35 (1990) 777–788. [Google Scholar]
  13. Y.D. Ji and H.J. Chizeck, Jump linear quadratic Guassian control in continuous time. IEEE Trans. Automat. Contr. 37 (1992) 1884–1892. [CrossRef] [Google Scholar]
  14. A. Kanchanaharuthai, Optimal sampled-data controller design with time-multiplied performance index for load-frequency control, in Proceedings of the 2004 IEEE international conference on control applications (2004) 655–660. [Google Scholar]
  15. G. Kreisselmeier and R. Lozano, Adaptive control of continuous-time overmodeled plants. IEEE Trans. Automat. Contr. 41 (1996) 1779–1794. [CrossRef] [Google Scholar]
  16. H.J. Kushner, Stochastic Stability and Control. Academic Press (1967). [Google Scholar]
  17. R.S. Lipster and A.N. Shiryaev, Statistics of Random Processes I. General Theory. Second edition, Springer Verlag (2001). [Google Scholar]
  18. M. Mariton, Jump Linear Systems in Automatic Control. Marcel Dekker Inc. (1990). [Google Scholar]
  19. O. Ocah and M.E. Sezer, Robust adaptive sampled-data control of a class of systems under structured nonlinear perturbations. IEEE Trans. Automat. Contr. 42 (1997) 553–558. [CrossRef] [Google Scholar]
  20. Y. Oishi, A bound of conservativeness in sampled-data robust stabilization and its dependence on sampling periods. Systems Control Lett. 32 (1997) 11–19. [Google Scholar]
  21. R. Ortega and G. Kreisselmeier, Discrete-time model reference adaptive control for continuous-time systems using generalized sampled-Data hold functions. IEEE Trans. Automat. Contr. 35 (1990) 334–338. [CrossRef] [Google Scholar]
  22. P. Protter, Stochastic Integration and Differential Equations: A New Approach. Springer-Verlag (1990). [Google Scholar]
  23. D.D. Sworder, Hybrid adaptive control. Appl. Math. Comput. 45 (1991) 173–192. [CrossRef] [MathSciNet] [Google Scholar]
  24. S.P. Tan, J.-F. Zhang and L.L. Yao, Optimality analysis of adaptive sampled control of hybrid systems with quadratic index. IEEE Trans. Automat. Contr. 50 (2005) 1044–1051. [CrossRef] [Google Scholar]
  25. W.M. Wonham, Random Differential Equations in Control Theory, in Probabilistic Methods in Applied Mathematics 2, A.T. Bharucha-Reid Ed., Academic Press (1970). [Google Scholar]
  26. F. Xue and L. Guo, Necessary and sufficient conditions for adaptive stability of jump linear systems. Communications in Information and Systems 1 (2001) 205–224. [MathSciNet] [Google Scholar]
  27. L.L. Yao and J.F. Zhang, Sampled-data-based LQ control of stochastic linear continuous-time systems. Science in China (Series F) 45 (2002) 383–396. [CrossRef] [MathSciNet] [Google Scholar]
  28. R. Yu, O. Ocali and M.E. Sezer, Adaptive robust sampled-data control of a class of systems under structured perturbations. IEEE Trans. Automat. Contr. 38 (1993) 1707–1713. [CrossRef] [Google Scholar]
  29. C. Zhang, R.H. Middleton and R.J. Evans, An algorithm for multirate sampling adaptive control. IEEE Trans. Automat. Contr. 34 (1989) 792–795. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.