Free Access
Volume 16, Number 1, January-March 2010
Page(s) 132 - 147
Published online 08 November 2008
  1. A. Ben-Tal and A. Nemirovski, Optimization I-II, Convex Analysis, Nonlinear Programming, Nonlinear Programming Algorithms, Lecture Notes. Technion, Israel Institute of Technology (2004), available for download at nemirovs/Lect_OptI-II.pdf. [Google Scholar]
  2. A. Ben-Tal and M. Teboulle, An old-new concept of convex risk measures: The optimized certainty equivalent. Math. Finance 17 (2007) 449–476. [CrossRef] [MathSciNet] [Google Scholar]
  3. A.E. Bernardo and O. Ledoit, Gain, loss and asset pricing. J. Political Economy 81 (2000) 637–654. [Google Scholar]
  4. D. Bertsimas and I. Popescu, On the relation between option and stock prices: An optimization approach. Oper. Res. 50 (2002) 358–374. [CrossRef] [MathSciNet] [Google Scholar]
  5. D. Bertsimas and I. Popescu, Optimal inequalities in probability theory: A convex optimization approach. SIAM J. Optim. 15 (2005) 780–804. [CrossRef] [MathSciNet] [Google Scholar]
  6. F. Black and M. Scholes, The pricing of options and corporate liabilities. J. Political Economy 108 (1973) 144–172. [Google Scholar]
  7. A. Brooke, D. Kendrick and A. Meeraus, GAMS: A User's Guide. The Scientific Press, San Fransisco, California (1992). [Google Scholar]
  8. G. Calafiore, Ambiguous risk measures and optimal robust portfolios. SIAM J. Optim. 18 (2007) 853–877. [CrossRef] [MathSciNet] [Google Scholar]
  9. R. Cont, Model uncertainty and its impact on the pricing of derivative instruments. Math. Finance 16 (2006) 519–547. [CrossRef] [MathSciNet] [Google Scholar]
  10. I. Csiszar, Information-type measures of difference of probability distributions and indirect observations. Studia Sci. Math. Hungarica 2 (1967) 299–318. [Google Scholar]
  11. A. d'Aspremont and L. El Ghaoui, Static arbitrage bounds on basket option prices. Math. Programming 106 (2006) 467–489. [CrossRef] [Google Scholar]
  12. A. Eichhorn and W. Römisch, Polyhedral risk measures in stochastic programming. SIAM J. Optim. 16 (2005) 69–95. [CrossRef] [MathSciNet] [Google Scholar]
  13. L. El Ghaoui, M. Oks and F. Oustry, Worst-case value-at-risk and robust portfolio optimization: A conic programming approach. Oper. Res. 51 (2003) 543–556. [CrossRef] [MathSciNet] [Google Scholar]
  14. L.G. Epstein, A definition of uncertainty aversion. Rev. Economic Studies 65 (1999) 579–608. [CrossRef] [Google Scholar]
  15. M.C. Ferris and T.S. Munson, Interfaces to PATH 3.0: Design, implementation and usage. Technical Report, University of Wisconsin, Madison (1998). [Google Scholar]
  16. H. Föllmer and A. Schied, Stochastic Finance: An Introduction in Discrete Time, De Gruyter Studies in Mathematics 27. Second Edition, Berlin (2004). [Google Scholar]
  17. J.M. Harrison and D.M. Kreps, Martingales and arbitrage in multiperiod securities markets. J. Economic Theory 20 (1979) 381–408. [CrossRef] [Google Scholar]
  18. J.M. Harrison and S.R. Pliska, Martingales and stochastic integrals in the theory of continuous trading. Stoch. Process. Appl. 11 (1981) 215–260. [Google Scholar]
  19. A.J. King and L.A. Korf, Martingale Pricing Measures in Incomplete Markets via Stochastic Programming Duality in the Dual of Formula . Technical Report (2001). [Google Scholar]
  20. L.A. Korf, Stochastic programming duality: Formula multipliers for unbounded constraints with an application to mathematical finance. Math. Programming 99 (2004) 241–259. [CrossRef] [Google Scholar]
  21. S. Kullback, Information Theory and Statistics. Wiley, New York (1959) [Google Scholar]
  22. H.J. Landau, Moments in mathematics, in Proc. Sympos. Appl. Math. 37, H.J. Landau Ed., AMS, Providence, RI (1987). [Google Scholar]
  23. I.R. Longarela, A simple linear programming approach to gain, loss and asset pricing. Topics in Theoretical Economics 2 (2002) Article 4. [Google Scholar]
  24. T.R. Rockafellar, Conjugate Duality and Optimization. SIAM, Philadelphia (1974). [Google Scholar]
  25. A. Ruszczyński and A. Shapiro, Optimization of risk measures, in Probabilistic and Randomized Methods for Design under Uncertainty, G. Calafiore and F. Dabbene Eds., Springer, London (2005). [Google Scholar]
  26. A. Ruszczyński and A. Shapiro, Optimization of convex risk functions. Math. Oper. Res. 31 (2006) 433–452. [CrossRef] [MathSciNet] [Google Scholar]
  27. A. Shapiro, On duality theory of convex semi-infinite programming. Optimization 54 (2005) 535–543. [CrossRef] [MathSciNet] [Google Scholar]
  28. A. Shapiro and S. Ahmed, On a class of stochastic minimax programs. SIAM J. Optim. 14 (2004) 1237–1249. [CrossRef] [MathSciNet] [Google Scholar]
  29. A. Shapiro and A. Kleywegt, Minimax analysis of stochastic problems. Optim. Methods Software 17 (2002) 523–542. [CrossRef] [Google Scholar]
  30. J.E. Smith, Generalized Chebychev inequalities: Theory and applications in decision analysis. Oper. Res. 43 (1995) 807–825. [CrossRef] [MathSciNet] [Google Scholar]
  31. Sh. Tian and R.J.-B. Wets, Pricing Contingent Claims: A Computational Compatible Approach. Technical Report, Department of Mathematics, University of California, Davis (2006). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.