Free Access
Issue
ESAIM: COCV
Volume 16, Number 1, January-March 2010
Page(s) 92 - 110
DOI https://doi.org/10.1051/cocv:2008065
Published online 21 October 2008
  1. I. Aganović, J. Tambača and Z. Tutek, Derivation and justification of the models of rods and plates from linearized three-dimensional micropolar elasticity. J. Elasticity 84 (2006) 131–152. [CrossRef] [MathSciNet] [Google Scholar]
  2. A. Ambrosetti and G. Prodi, A Primer of Nonlinear Analysis. Cambridge University Press, Cambridge (1993). [Google Scholar]
  3. J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63 (1976/1977) 337–403. [Google Scholar]
  4. P.G. Ciarlet, Mathematical elasticity – Volume I: Three-dimensional elasticity. North-Holland Publishing Co., Amsterdam (1988). [Google Scholar]
  5. E. Cosserat and F. Cosserat, Théorie des corps déformables. Librairie Scientifique A. Hermann et Fils [Theory of deformable bodies], Paris (1909). [Google Scholar]
  6. B. Dacorogna, Direct methods in the calculus of variations. Springer-Verlag, Berlin (1989). [Google Scholar]
  7. A.C. Eringen, Microcontinuum Field Theories – Volume 1: Foundations and Solids. Springer-Verlag, New York (1999). [Google Scholar]
  8. G.B. Folland, Real analysis, Modern techniques and their applications. John Wiley & Sons, Inc., New York (1984). [Google Scholar]
  9. I. Hlaváček and M. Hlaváček, On the existence and uniqueness of solution and some variational principles in linear theories of elasticity with couple-stresses. I. Cosserat continuum. Appl. Math. 14 (1969) 387–410. [Google Scholar]
  10. J. Jeong and P. Neff, Existence, uniqueness and stability in linear Cosserat elasticity for weakest curvature conditions. Math. Mech. Solids (2008) DOI: 10.1177/1081286508093581. Preprint 2550 available at http://www3.mathematik.tu-darmstadt.de/fb/mathe/bibliothek/preprints.html. [Google Scholar]
  11. P.M. Mariano and G. Modica, Ground states in complex bodies. ESAIM: COCV (2008) published online, DOI: 10.1051/cocv:2008036. [EDP Sciences] [Google Scholar]
  12. N.G. Meyers, Quasi-convexity and lower semi-continuity of multiple variational integrals of any order. Trans. Amer. Math. Soc. 119 (1965) 125–149. [CrossRef] [MathSciNet] [Google Scholar]
  13. P. Neff, On Korn's first inequality with nonconstant coefficients. Proc. R. Soc. Edinb. Sect. A 132 (2002) 221–243. [CrossRef] [Google Scholar]
  14. P. Neff, Existence of minimizers for a geometrically exact Cosserat solid. Proc. Appl. Math. Mech. 4 (2004) 548–549. [CrossRef] [Google Scholar]
  15. P. Neff, A geometrically exact Cosserat-shell model including size effects, avoiding degeneracy in the thin shell limit, Part I: Formal dimensional reduction for elastic plates and existence of minimizers for positive Cosserat couple modulus. Cont. Mech. Thermodynamics 16 (2004) 577–628. [CrossRef] [Google Scholar]
  16. P. Neff, The Cosserat couple modulus for continuous solids is zero viz the linearized Cauchy-stress tensor is symmetric. Z. Angew. Math. Mech. 86 (2006) 892–912. Preprint 2409 available at http://www3.mathematik.tu-darmstadt.de/fb/mathe/bibliothek/preprints.html. [CrossRef] [MathSciNet] [Google Scholar]
  17. P. Neff, Existence of minimizers for a finite-strain micromorphic elastic solid. Proc. Roy. Soc. Edinb. A 136 (2006) 997–1012. Preprint 2318 available at http://wwwbib.mathematik.tu-darmstadt.de/Math-Net/Preprints/Listen/pp04.html. [CrossRef] [Google Scholar]
  18. P. Neff, A finite-strain elastic-plastic Cosserat theory for polycrystals with grain rotations. Int. J. Eng. Sci. 44 (2006) 574–594. [CrossRef] [Google Scholar]
  19. P. Neff, A geometrically exact planar Cosserat shell-model with microstructure. Existence of minimizers for zero Cosserat couple modulus. Math. Meth. Appl. Sci. 17 (2007) 363–392. Preprint 2357 available at http://www3.mathematik.tu-darmstadt.de/fb/mathe/bibliothek/preprints.html. [CrossRef] [Google Scholar]
  20. P. Neff and K. Chelminski, A geometrically exact Cosserat shell-model for defective elastic crystals. Justification via Formula -convergence. Interfaces Free Boundaries 9 (2007) 455–492. [CrossRef] [MathSciNet] [Google Scholar]
  21. P. Neff and S. Forest, A geometrically exact micromorphic model for elastic metallic foams accounting for affine microstructure. Modelling, existence of minimizers, identification of moduli and computational results. J. Elasticity 87 (2007) 239–276. [CrossRef] [MathSciNet] [Google Scholar]
  22. P. Neff and I. Münch, Curl bounds Grad on SO(3). ESAIM: COCV 14 (2008) 148–159. Preprint 2455 available at http://www3.mathematik.tu-darmstadt.de/fb/mathe/bibliothek/preprints.html. [CrossRef] [EDP Sciences] [Google Scholar]
  23. W. Nowacki, Theory of asymmetric elasticity. Oxford, Pergamon (1986). [Google Scholar]
  24. W. Pompe, Korn's first inequality with variable coefficients and its generalizations. Commentat. Math. Univ. Carolinae 44 (2003) 57–70. [Google Scholar]
  25. J. Tambača and I. Velčić, Derivation of a model of nonlinear micropolar plate. (Submitted). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.