Free Access
Issue |
ESAIM: COCV
Volume 16, Number 1, January-March 2010
|
|
---|---|---|
Page(s) | 77 - 91 | |
DOI | https://doi.org/10.1051/cocv:2008064 | |
Published online | 21 October 2008 |
- N. Ackermann, On a periodic Schrödinger equation with nonlinear superlinear part. Math. Z. 248 (2004) 423–443. [CrossRef] [MathSciNet] [Google Scholar]
- N. Ackermann, A superposition principle and multibump solutions of periodic Schrödinger equations. J. Func. Anal. 234 (2006) 277–320. [CrossRef] [Google Scholar]
-
C.O. Alves, P.C. Carrião and O.H. Miyagaki, On the existence of positive solutions of a perturbed Hamiltonian system in
. J. Math. Anal. Appl. 276 (2002) 673–690. [CrossRef] [MathSciNet] [Google Scholar]
- A.I. Ávila and J. Yang, On the existence and shape of least energy solutions for some elliptic systems. J. Diff. Eq. 191 (2003) 348–376. [CrossRef] [Google Scholar]
- A.I. Ávila and J. Yang, Multiple solutions of nonlinear elliptic systems. Nonlinear Differ. Equ. Appl. 12 (2005) 459–479. [Google Scholar]
- T. Bartsch and D.G. De Figueiredo, Infinitely many solutions of nonlinear elliptic systems, in Progress in Nonlinear Differential Equations and Their Applications 35, Birkhäuser, Basel/Switzerland (1999) 51–67. [Google Scholar]
- T. Bartsch and Y. Ding, Deformation theorems on non-metrizable vector spaces and applications to critical point theory. Math. Nach. 279 (2006) 1–22. [Google Scholar]
- V. Benci and P.H. Rabinowitz, Critical point theorems for indefinite functionals. Inven. Math. 52 (1979) 241–273. [CrossRef] [Google Scholar]
- V. Coti-Zelati and P.H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials. J. Amer. Math. Soc. 4 (1991) 693–727. [CrossRef] [MathSciNet] [Google Scholar]
-
V. Coti-Zelati and P.H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on
. Comm. Pure Appl. Math. 45 (1992) 1217–1269. [CrossRef] [MathSciNet] [Google Scholar]
- D.G. De Figueiredo and Y.H. Ding, Strongly indefinite functionals and multiple solutions of elliptic systems. Trans. Amer. Math. Soc. 355 (2003) 2973–2989. [CrossRef] [MathSciNet] [Google Scholar]
- D.G. De Figueiredo and P.L. Felmer, On superquadratic elliptic systems. Trans. Amer. Math. Soc. 343 (1994) 97–116. [Google Scholar]
- D.G. De Figueiredo and J. Yang, Decay, symmetry and existence of solutions of semilinear elliptic systems. Nonlinear Anal. 33 (1998) 211–234. [CrossRef] [MathSciNet] [Google Scholar]
- D.G. De Figueiredo, J. Marcos do Ó and B. Ruf, An Orlicz-space approach to superlinear elliptic systems. J. Func. Anal. 224 (2005) 471–496. [CrossRef] [Google Scholar]
- Y. Ding and L. Jeanjean, Homoclinic orbits for a non periodic Hamiltonian system. J. Diff. Eq. 237 (2007) 473–490. [CrossRef] [Google Scholar]
- Y. Ding and F.H. Lin, Semiclassical states of Hamiltonian systems of Schrödinger equations with subcritical and critical nonlinearies. J. Partial Diff. Eqs. 19 (2006) 232–255. [Google Scholar]
- J. Hulshof and R.C.A.M. Van de Vorst, Differential systems with strongly variational structure. J. Func. Anal. 114 (1993) 32–58. [CrossRef] [Google Scholar]
- W. Kryszewski and A. Szulkin, An infinite dimensional Morse theory with applications. Trans. Amer. Math. Soc. 349 (1997) 3181–3234. [CrossRef] [MathSciNet] [Google Scholar]
- W. Kryszewski and A. Szulkin, Generalized linking theorem with an application to semilinear Schrödinger equations. Adv. Differential Equations 3 (1998) 441–472. [MathSciNet] [Google Scholar]
- G. Li and A. Szulkin, An asymptotically periodic Schrödinger equation with indefinite linear part. Comm. Contemp. Math. 4 (2002) 763–776. [CrossRef] [Google Scholar]
- G. Li and J. Yang, Asymptotically linear elliptic systems. Comm. Partial Diff. Eq. 29 (2004) 925–954. [Google Scholar]
- A. Pistoia and M. Ramos, Locating the peaks of the least energy solutions to an elliptic system with Neumann boundary conditions. J. Diff. Eq. 201 (2004) 160–176. [CrossRef] [Google Scholar]
- M. Reed and B. Simon, Methods of Modern Mathematical Physics, IV Analysis of Operators. Academic Press, New York (1978). [Google Scholar]
- E. Séré, Existence of infinitely many homoclinic orbits in Hamiltonian stysems. Math. Z. 209 (1992) 133–160. [Google Scholar]
- B. Sirakov, On the existence of solutions of Hamiltonian elliptic systems in RN. Adv. Differential Equations 5 (2000) 1445–1464. [MathSciNet] [Google Scholar]
- C. Troestler and M. Willem, Nontrivial solution of a semilinear Schrödinger equation. Comm. Partial Diff. Eq. 21 (1996) 1431–1449. [CrossRef] [Google Scholar]
- M. Willem, Minimax Theorems. Birkhäuser, Berlin (1996). [Google Scholar]
-
J. Yang, Nontrivial solutions of semilinear elliptic systems in
. Electron. J. Diff. Eqns. 6 (2001) 343–357. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.