Free Access
Issue
ESAIM: COCV
Volume 16, Number 2, April-June 2010
Page(s) 400 - 419
DOI https://doi.org/10.1051/cocv/2009003
Published online 21 April 2009
  1. P. Courtier, J.N. Thepaut and A. Hollingsworth, A strategy for operational implementation of 4D-Var, using an incremental approach. Q. J. Roy. Meteor. Soc. 120 (1994) 1367–1387. [CrossRef] [Google Scholar]
  2. V. Girault and P.-A. Raviart, Finite element approximation of the Navier-Stokes equations, Lecture Notes in Mathematics 749. Springer-Verlag, Berlin (1979). [Google Scholar]
  3. C. Hu, R. Temam and M. Ziane, Regularity results for linear elliptic problems related to the primitive equations. Chinese Ann. Math. Ser. B 23 (2002) 277–292. Dedicated to the memory of Jacques-Louis Lions. [CrossRef] [MathSciNet] [Google Scholar]
  4. I. Kukavica and M. Ziane, On the regularity of the primitive equations of the ocean. Nonlinearity 20 (2007) 2739–2753. [CrossRef] [MathSciNet] [Google Scholar]
  5. F.-X. Le Dimet, A general formalism of variational analysis. Technical Report 73091 22, CIMMS, Norman, Oklahoma, USA (1982). [Google Scholar]
  6. F.-X. Le Dimet and O. Talagrand, Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus Series A 38 (1986) 97. [CrossRef] [Google Scholar]
  7. J.-L. Lions, Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Dunod, Paris (1968). [Google Scholar]
  8. J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969). [Google Scholar]
  9. J.-L. Lions, R. Temam and S.H. Wang, New formulations of the primitive equations of atmosphere and applications. Nonlinearity 5 (1992) 237–288. [CrossRef] [MathSciNet] [Google Scholar]
  10. G. Madec, P. Delecluse, M. Imbard and C. Lévy, OPA 8.1 Ocean General Circulation Model reference manual. Note du Pôle de Modélisation, Institut Pierre Simon Laplace, France (1999). [Google Scholar]
  11. M. Nodet, Variational assimilation of Lagrangian data in oceanography. Inverse Problems 22 (2006) 245–263. [CrossRef] [MathSciNet] [Google Scholar]
  12. R. Temam, Navier-Stokes equations. Theory and numerical analysis, Studies in Mathematics and its Applications 2. North-Holland Publishing Co., Amsterdam (1977). [Google Scholar]
  13. R. Temam, Navier-Stokes equations, Theory and numerical analysis. Reprint of the 1984 edition, AMS Chelsea Publishing, Providence, RI (2001). [Google Scholar]
  14. R. Temam and M. Ziane, Some mathematical problems in geophysical fluid dynamics, in Handbook of mathematical fluid dynamics III, North-Holland, Amsterdam (2004) 535–657. [Google Scholar]
  15. E. Titi and C. Cao, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics. Annals Math. 166 (2007) 245–267. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.