Free Access
Issue
ESAIM: COCV
Volume 16, Number 2, April-June 2010
Page(s) 380 - 399
DOI https://doi.org/10.1051/cocv/2009004
Published online 21 April 2009
  1. A.A. Agrachev, Exponential mappings for contact sub-Riemannian structures. J. Dyn. Control Systems 2 (1996) 321–358. [CrossRef] [Google Scholar]
  2. A.A. Agrachev and Yu.L. Sachkov, Control Theory from the Geometric Viewpoint. Springer-Verlag, Berlin (2004). [Google Scholar]
  3. A.M. Bloch, J. Baillieul, P.E. Crouch and J. Marsden, Nonholonomic Mechanics and Control. Springer (2003). [Google Scholar]
  4. U. Boscain and F. Rossi, Invariant Carnot-Caratheodory metrics on S3, SO(3), SL(2) and Lens Spaces. SIAM J. Control Optim. 47 (2008) 1851–1878. [CrossRef] [MathSciNet] [Google Scholar]
  5. R. Brockett, Control theory and singular Riemannian geometry, in New Directions in Applied Mathematics, P. Hilton and G. Young Eds., Springer-Verlag, New York (1981) 11–27. [Google Scholar]
  6. C. El-Alaoui, J.P. Gauthier and I. Kupka, Small sub-Riemannian balls on Formula . J. Dyn. Control Systems 2 (1996) 359–421. [CrossRef] [Google Scholar]
  7. V. Jurdjevic, Geometric Control Theory. Cambridge University Press (1997). [Google Scholar]
  8. J.P. Laumond, Nonholonomic motion planning for mobile robots, Lecture notes in Control and Information Sciences 229. Springer (1998). [Google Scholar]
  9. F. Monroy-Perez and A. Anzaldo-Meneses, The step-2 nilpotent (n, n(n+1)/2) sub-Riemannian geometry. J. Dyn. Control Systems 12 (2006) 185–216. [CrossRef] [Google Scholar]
  10. R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications. American Mathematical Society (2002). [Google Scholar]
  11. O. Myasnichenko, Nilpotent (3, 6) sub-Riemannian problem. J. Dyn. Control Systems 8 (2002) 573–597. [CrossRef] [Google Scholar]
  12. O. Myasnichenko, Nilpotent (n, n(n+1)/2) sub-Riemannian problem. J. Dyn. Control Systems 12 (2006) 87–95. [CrossRef] [Google Scholar]
  13. J. Petitot, The neurogeometry of pinwheels as a sub-Riemannian contact stucture. J. Physiology - Paris 97 (2003) 265–309. [CrossRef] [PubMed] [Google Scholar]
  14. L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko, The mathematical theory of optimal processes. Wiley Interscience (1962). [Google Scholar]
  15. Yu.L. Sachkov, Exponential map in the generalized Dido's problem. Mat. Sbornik 194 (2003) 63–90 (in Russian). English translation in: Sb. Math. 194 (2003) 1331–1359. [CrossRef] [MathSciNet] [Google Scholar]
  16. Yu.L. Sachkov, Discrete symmetries in the generalized Dido problem. Mat. Sbornik 197 (2006) 95–116 (in Russian). English translation in: Sb. Math. 197 (2006) 235–257. [CrossRef] [MathSciNet] [Google Scholar]
  17. Yu.L. Sachkov, The Maxwell set in the generalized Dido problem. Mat. Sbornik 197 (2006) 123–150 (in Russian). English translation in: Sb. Math. 197 (2006) 595–621. [Google Scholar]
  18. Yu.L. Sachkov, Complete description of the Maxwell strata in the generalized Dido problem. Mat. Sbornik 197 (2006) 111–160 (in Russian). English translation in: Sb. Math. 197 (2006) 901–950. [Google Scholar]
  19. Yu.L. Sachkov, Maxwell strata in Euler's elastic problem. J. Dyn. Control Systems 14 (2008) 169–234. [CrossRef] [MathSciNet] [Google Scholar]
  20. Yu.L. Sachkov, Conjugate points in Euler's elastic problem. J. Dyn. Control Systems 14 (2008) 409–439. [CrossRef] [MathSciNet] [Google Scholar]
  21. Yu.L. Sachkov, Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane. ESAIM: COCV (Submitted). [Google Scholar]
  22. A.M. Vershik and V.Y. Gershkovich, Nonholonomic Dynamical Systems, Geometry of distributions and variational problems (Russian), in Itogi Nauki i Tekhniki: Sovremennye Problemy Matematiki, Fundamental'nyje Napravleniya 16, VINITI, Moscow (1987) 5–85. English translation in: Encyclopedia of Mathematical Sciences 16, Dynamical Systems 7, Springer Verlag. [Google Scholar]
  23. E.T. Whittaker and G.N. Watson, A Course of Modern Analysis, An introduction to the general theory of infinite processes and of analytic functions; with an account of principal transcendental functions. Cambridge University Press, Cambridge (1996). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.