Free Access
Issue
ESAIM: COCV
Volume 16, Number 2, April-June 2010
Page(s) 356 - 379
DOI https://doi.org/10.1051/cocv/2009001
Published online 10 February 2009
  1. C. Bardos and T. Masrour, Mesures de défaut : observation et contrôle de plaques. C. R. Acad. Sci. Paris Sér. I Math. 323 (1996) 621–626. [Google Scholar]
  2. J. Bergh and J. Löfstrom, Interpolation Spaces, An Introduction. Springer Verlag (1976). [Google Scholar]
  3. J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Part I. GAFA Geom. Funct. Anal. 3 (1993) 107–156. [CrossRef] [MathSciNet] [Google Scholar]
  4. J. Bourgain, Global Solutions of Nonlinear Schrödinger Equations, in Colloquium publications 46, American Mathematical Society, Providence, RI (1999) 105. [Google Scholar]
  5. N. Burq and M. Zworski, Geometric control in the presence of a black box. J. Amer. Math. Soc. 17 (2004) 443–471. [CrossRef] [MathSciNet] [Google Scholar]
  6. N. Burq, P. Gérard and N. Tzvetkov, Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds. Amer. J. Math. 126 (2004) 569–605. [CrossRef] [MathSciNet] [Google Scholar]
  7. B. Dehman and G. Lebeau, Analysis of the HUM Control Operator and Exact Controllability for Semilinear Waves in Uniform Time. Preprint. [Google Scholar]
  8. B. Dehman, G. Lebeau and E. Zuazua, Stabilization and control for the subcritical semilinear wave equation. Ann. Sci. École Norm. Sup. 36 (2003) 525–551. [Google Scholar]
  9. B. Dehman, P. Gérard and G. Lebeau, Stabilization and control for the nonlinear Schrödinger equation on a compact surface. Math. Z. 254 (2006) 729–749. [CrossRef] [MathSciNet] [Google Scholar]
  10. P. Gérard, Microlocal defect measures. Comm. Partial Diff. Equ. 16 (1991) 1762–1794. [Google Scholar]
  11. J. Ginibre, Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d'espace, in Séminaire Bourbaki 37, exposé 796 (1994–1995) 163–187. [Google Scholar]
  12. V. Isakov, Carleman type estimates in an anisotropic case and applications. J. Differ. Equ. 105 (1993) 217–238. [CrossRef] [Google Scholar]
  13. S. Jaffard, Contrôle interne exact des vibrations d'une plaque rectangulaire. Portugal. Math. 47 (1990) 423–429. [MathSciNet] [Google Scholar]
  14. V. Komornik and P. Loreti, Fourier Series in Control Theory. Springer (2005). [Google Scholar]
  15. G. Lebeau, Contrôle de l'équation de Schrödinger. J. Math. Pures Appl. 71 (1992) 267–291. [MathSciNet] [Google Scholar]
  16. E. Machtyngier, Exact controllability for the Schrödinger equation. SIAM J. Control Optim. 32 (1994) 24–34. [Google Scholar]
  17. L. Miller, Controllability cost of conservative systems: resolvent condition and transmutation. J. Funct. Anal. 218 (2005) 425–444. [CrossRef] [MathSciNet] [Google Scholar]
  18. L. Molinet, On ill-posedness for the one-dimensional periodic cubic Schrödinger equation. Math. Res. Lett. (to appear). [Google Scholar]
  19. K.-D. Phung, Observability and control of Schrödinger equations. SIAM J. Control Optim. 40 (2001) 211–230. [CrossRef] [MathSciNet] [Google Scholar]
  20. L. Rosier and B.-Y. Zhang, Exact controllability and stabilization of the nonlinear Schrödinger equation on a bounded interval. SIAM J. Control Optim. (to appear). [Google Scholar]
  21. T. Tao, Nonlinear Dispersive Equations, Local and global Analysis, CBMS Regional Conference Series in Mathematics 106. American Mathematical Society (2006). [Google Scholar]
  22. G. Tenenbaum and M. Tucsnak, Fast and strongly localized observation for the Schrödinger equation. Trans. Amer. Math. Soc. (to appear) iecn.u-nancy.fr. [Google Scholar]
  23. E. Zuazua, Exact controllability for the semilinear wave equation. J. Math. Pures Appl. 69 (1990) 33–55. [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.