Free Access
Issue
ESAIM: COCV
Volume 16, Number 2, April-June 2010
Page(s) 327 - 336
DOI https://doi.org/10.1051/cocv:2008072
Published online 19 December 2008
  1. R.A. Adams, Sobolev spaces. Academic Press, New York (1975). [Google Scholar]
  2. A. Alvino, L. Boccardo, V. Ferone, L. Orsina and G. Trombetti, Existence results for nonlinear elliptic equations with degenerate coercivity. Ann. Mat. Pura Appl. (4) 182 (2003) 53–79. [CrossRef] [MathSciNet] [Google Scholar]
  3. D. Arcoya and P.J. Martínez-Aparicio, Quasilinear equations with natural growth. Rev. Mat. Iberoamericana 24 (2008) 597–616. [Google Scholar]
  4. D. Arcoya, J. Carmona and P.J. Martínez-Aparicio, Elliptic obstacle problems with natural growth on the gradient and singular nonlinear terms. Adv. Nonlinear Stud. 7 (2007) 299–317. [MathSciNet] [Google Scholar]
  5. D. Arcoya, J. Carmona, T. Leonori, P.J. Martínez-Aparicio, L. Orsina and F. Petitta, Existence and nonwxistence of solutions for singular quadratic quasilinear equations. J. Differ. Equ. (submitted). [Google Scholar]
  6. D. Arcoya, S. Barile and P.J. Martínez-Aparicio, Singular quasilinear equations with quadratic growth in the gradient without sign condition. J. Math. Anal. Appl. 350 (2009) 401–408. [CrossRef] [MathSciNet] [Google Scholar]
  7. G. Barles and F. Murat, Uniqueness and the maximum principle for quasilinear elliptic equations with quadratic growth conditions. Arch. Rational Mech. Anal. 133 (1995) 77–101. [CrossRef] [MathSciNet] [Google Scholar]
  8. G. Barles and A. Porretta, Uniqueness for unbounded solutions to stationary viscous Hamilton-Jacobi equations. Ann. Scuola Norm. Super. Pisa Cl. Sci. (5) 5 (2006) 107–136. [Google Scholar]
  9. G. Barles, A.P. Blanc, C. Georgelin and M. Kobylanski, Remarks on the maximum principle for nonlinear elliptic PDEs with quadratic growth conditions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999) 381–404. [MathSciNet] [Google Scholar]
  10. P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, J.L. Vázquez, An L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola Norm Sup. Pisa Cl. Sci. (4) 22 (1995) 241–273. [MathSciNet] [Google Scholar]
  11. M.F. Betta, A. Mercaldo, F. Murat and M.M. Porzio, Existence and uniqueness results for nonlinear elliptic problems with a lower order term and measure datum. C. R. Math. Acad. Sci. Paris 334 (2002) 757–762. [CrossRef] [MathSciNet] [Google Scholar]
  12. M.F. Betta, A. Mercaldo, F. Murat and M.M. Porzio, Uniqueness of renormalized solutions to nonlinear elliptic equations with a lower order term and right hand side in L1(Ω). ESAIM: COCV 8 (2002) 239–272 [CrossRef] [EDP Sciences] [Google Scholar]
  13. M.F. Betta, A. Mercaldo, F. Murat and M.M. Porzio, Uniqueness results for nonlinear elliptic equations with a lower order term. Nonlinear Anal. 63 (2005) 153–170. [CrossRef] [MathSciNet] [Google Scholar]
  14. D. Blanchard, F. Désir and O. Guibé, Quasi-linear degenerate elliptic problems with L1 data. Nonlinear Anal. 60 (2005) 557–587. [MathSciNet] [Google Scholar]
  15. L. Boccardo, Dirichlet problems with singular and gradient quadratic lower order terms. ESAIM: COCV 14 (2008) 411–426. [CrossRef] [EDP Sciences] [Google Scholar]
  16. L. Boccardo and L. Orsina, Existence and regularity of minima for integral functionals noncoercive in the energy space. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997) 95–130. [MathSciNet] [Google Scholar]
  17. L. Boccardo, F. Murat and J.P. Puel, Existence de solutions non bornées pour certaines équations quasi-linéaires. Portugal. Math. 41 (1982) 507–534. [MathSciNet] [Google Scholar]
  18. L. Boccardo, F. Murat and J.P. Puel, Résultats d'existence pour certains problèmes elliptiques quasilinéaires. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11 (1984) 213–235. [MathSciNet] [Google Scholar]
  19. L. Boccardo, A. Dall'Aglio and L. Orsina, Existence and regularity results for some elliptic equations with degenerate coercivity. Atti Sem. Mat. Fis. Univ. Modena 46 Suppl. (1998) 51–81. [Google Scholar]
  20. L. Boccardo, S. Segura de León and C. Trombetti, Bounded and unbounded solutions for a class of quasi-linear elliptic problems with a quadratic gradient term. J. Math. Pures Appl. 80 (2001) 919–940. [CrossRef] [MathSciNet] [Google Scholar]
  21. H. Brezis and L. Oswald, Remarks on sublinear elliptic equations. Nonlinear Anal. T.M.A. 10 (1986) 55–64. [CrossRef] [MathSciNet] [Google Scholar]
  22. J. Casado-Díaz, F. Murat and A. Porretta, Uniqueness of the Neumann condition and comparison results for Dirichlet pseudo-monotone problems, in The first 60 years of nonlinear analysis of Jean Mawhin, World Sci. Publ., River Edge, NJ (2004) 27–40. [Google Scholar]
  23. G. Dal Maso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions of elliptic equations with general measure data. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999) 741–808. [MathSciNet] [Google Scholar]
  24. D. Giachetti and F. Murat, An elliptic problem with a lower order term having singular behaviour. Boll. Un. Mat. Ital. B (to appear). [Google Scholar]
  25. D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer-Verlag, New York (1983). [Google Scholar]
  26. L. Korkut, M. Pašić and D. Žubrinić, Some qualitative properties of solutions of quasilinear elliptic equations and applications. J. Differ. Equ. 170 (2001) 247–280. [CrossRef] [Google Scholar]
  27. A. Porretta, Uniqueness of solutions of some elliptic equations without condition at infinity. C. R. Math. Acad. Sci. Paris 335 (2002) 739–744. [CrossRef] [MathSciNet] [Google Scholar]
  28. A. Porretta, Some uniqueness results for elliptic equations without condition at infinity. Commun. Contemp. Math. 5 (2003) 705–717. [CrossRef] [MathSciNet] [Google Scholar]
  29. A. Porretta, Uniqueness of solutions for some nonlinear Dirichlet problems. NoDEA Nonlinear Differ. Equ. Appl. 11 (2004) 407–430. [CrossRef] [Google Scholar]
  30. A. Porretta and S. Segura de León, Nonlinear elliptic equations having a gradient term with natural growth. J. Math. Pures Appl. 85 (2006) 465–492. [CrossRef] [MathSciNet] [Google Scholar]
  31. S. Segura de León, Existence and uniqueness for L1 data of some elliptic equations with natural growth. Adv. Differential Equations 8 (2003) 1377–1408. [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.