Free Access
Volume 16, Number 3, July-September 2010
Page(s) 719 - 743
Published online 02 July 2009
  1. G. Allaire, Shape optimization by the homogenization method, Applied Mathematical Sciences 146. Springer-Verlag, New York (2002). [Google Scholar]
  2. G. Allaire, F. Jouve and N. Van Goethem, A level set method for the numerical simulation of damage evolution. Internal report 629, CMAP, École polytechnique, France (2007). [Google Scholar]
  3. H.D. Bui, Mécanique de la rupture fragile. Masson, Paris (1983). [Google Scholar]
  4. M. Burger, A framework for the construction of level set methods for shape optimization and reconstruction. Interface and Free Boundaries 5 (2003) 301–329. [Google Scholar]
  5. B. Dacorogna, Direct methods in the calculus of variations, Applied Mathematical Sciences 78. Springer-Verlag, Berlin (1989). [Google Scholar]
  6. F. De Gournay, G. Allaire and F. Jouve, Shape and topology optimization of the robust compliance via the level set method. ESAIM: COCV 14 (2008) 43–70. [Google Scholar]
  7. P. Destuynder, Calculation of forward thrust of a crack, taking into account the unilateral contact between the lips of the crack. C. R. Acad. Sci. Paris, Sér. II 296 (1983) 745–748. [Google Scholar]
  8. P. Destuynder, An approach to crack propagation control in structural dynamics. C. R. Acad. Sci. Paris, Sér. II 306 (1988) 953–956. [Google Scholar]
  9. P. Destuynder, Remarks on a crack propagation control for stationary loaded structures. C. R. Acad. Sci. Paris, Sér. IIb 308 (1989) 697–701. [Google Scholar]
  10. P. Destuynder, Computation of an active control in fracture mechanics using finite elements. Eur. J. Mech. A/Solids 9 (1990) 133–141. [Google Scholar]
  11. P. Destuynder, M. Djaoua and S. Lescure, Quelques remarques sur la mécanique de la rupture élastique. J. Mec. Theor. Appl. 2 (1983) 113–135. [Google Scholar]
  12. M. Djaoua, Analyse mathématique et numérique de quelques problèmes en mécanique de la rupture. Thèse d'état, Université Paris VI, France (1983). [Google Scholar]
  13. G.A. Francfort and J.J. Marigo, Revisiting brittle fracture as an energy minimisation problem. J. Mech. Phys. Solids 46 (1998) 1319–1342. [CrossRef] [MathSciNet] [Google Scholar]
  14. A.A. Griffith, The phenomena of rupture and flow in solids. Phil. Trans. Roy. Soc. London 46 (1920) 163–198. [Google Scholar]
  15. P. Grisvard, Singularities in boundary value problems, Research in Applied Mathematics. Springer-Verlag, Berlin (1992). [Google Scholar]
  16. P. Hild, A. Münch and Y. Ousset, On the control of crack growth in elastic media. C. R. Acad. Sci. Paris Sér. Méc. 336 (2008) 422–427. [Google Scholar]
  17. P. Hild, A. Münch and Y. Ousset, On the active control of crack growth in elastic media. Comput. Methods Appl. Mech. Engrg. 198 (2008) 407–419. [CrossRef] [MathSciNet] [Google Scholar]
  18. J.-B. Leblond, Mécanique de la rupture fragile et ductile. Hermes Sciences Publications (2003) 1–197. [Google Scholar]
  19. K.L. Lurie, An introduction to the mathematical theory of dynamic materials, Advances in Mechanics and Mathematics 15. Springer (2007). [Google Scholar]
  20. F. Maestre, A. Münch and P. Pedregal, A spatio-temporal design problem for a damped wave equation. SIAM J. Appl Math. 68 (2007) 109–132. [CrossRef] [MathSciNet] [Google Scholar]
  21. A. Münch, Optimal design of the support of the control for the 2-D wave equation: numerical investigations. Int. J. Numer. Anal. Model. 5 (2008) 331–351. [MathSciNet] [Google Scholar]
  22. A. Münch and Y. Ousset, Energy release rate for a curvilinear beam. C. R. Acad. Sci. Paris, Sér. IIb 328 (2000) 471–476. [Google Scholar]
  23. A. Münch and Y. Ousset, Numerical simulation of delamination growth in curved interfaces. Comput. Methods Appl. Mech. Engrg. 191 (2002) 2045–2067. [MathSciNet] [Google Scholar]
  24. A. Münch, P. Pedregal and F. Periago, Optimal design of the damping set for the stabilization of the wave equation. J. Diff. Eq. 231 (2006) 331–358. [CrossRef] [Google Scholar]
  25. A. Münch, P. Pedregal and F. Periago, Relaxation of an optimal design problem for the heat equation. J. Math. Pures Appl. 89 (2008) 225–247. [CrossRef] [MathSciNet] [Google Scholar]
  26. A. Münch, P. Pedregal and F. Periago, Optimal internal stabilization of the linear system of elasticity. Arch. Rational Mech. Analysis 193 (2009) 171–193. [CrossRef] [Google Scholar]
  27. F. Murat and J. Simon, Études de problèmes d'optimal design. Lect. Notes Comput. Sci. 41 (1976) 54–62. [Google Scholar]
  28. M.T. Niane, G. Bayili, A. Sène and M. Sy, Is it possible to cancel singularities in a domain with corners and cracks? C. R. Acad. Sci. Paris, Sér. I 343 (2006) 115–118. [Google Scholar]
  29. O. Pantz and K. Trabelsi, A post-treatment of the homogenization for shape optimization. SIAM J. Control. Optim. 47 (2008) 1380–1398. [Google Scholar]
  30. P. Pedregal, Parametrized measures and variational principles. Birkhäuser (1997). [Google Scholar]
  31. P. Pedregal, Vector variational problems and applications to optimal design. ESAIM: COCV 11 (2005) 357–381. [CrossRef] [EDP Sciences] [Google Scholar]
  32. P. Pedregal, Optimal design in two-dimensional conductivity for a general cost depending on the field. Arch. Rational Mech. Anal. 182 (2006) 367–385. [CrossRef] [Google Scholar]
  33. P. Pedregal, Div-Curl Young measures and optimal design in any dimension. Rev. Mat. Comp. 20 (2007) 239–255. [Google Scholar]
  34. L. Tartar, An introduction to the Homogenization method in optimal design, in Lecture Notes in Mathematics 1740, A. Cellina and A. Ornelas Eds., Springer, Berlin/Heidelberg (2000) 47–156. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.