Free Access
Issue |
ESAIM: COCV
Volume 16, Number 3, July-September 2010
|
|
---|---|---|
Page(s) | 744 - 763 | |
DOI | https://doi.org/10.1051/cocv/2009024 | |
Published online | 31 July 2009 |
- C.T.H. Baker, G.A. Bocharov and F.A. Rihan, A Report on the Use of Delay Differential Equations in Numerical Modelling in the Biosciences. Technical report, Manchester Centre for Computational Mathematics, UK (1999). [Google Scholar]
- A. Bensoussan, G. Da Prato, M. Delfour and S.K. Mitter, Representation and control of infinite dimensional systems. Second Edition, Birkhäuser (2007). [Google Scholar]
- M. Bardi and I.C. Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhäuser, Boston (1997). [Google Scholar]
- G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi, Mathematics and Applications 17. Springer-Verlag, Paris (1994). [Google Scholar]
- R. Boucekkine, O. Licandro, L. Puch and F. del Rio, Vintage capital and the dynamics of the AK model. J. Econ. Theory 120 (2005) 39–72. [Google Scholar]
- H. Brezis, Analyse fonctionnelle, théorie et applications. Masson, Paris (1983). [Google Scholar]
- G. Carlier and R. Tahraoui, On some optimal control problems governed by a state equation with memory. ESAIM: COCV 14 (2008) 725–743. [Google Scholar]
- M. Crandall and P.-L. Lions, Hamilton-Jacobi equations in infinite dimensions. I. Uniqueness of viscosity solutions. J. Funct. Anal. 62 (1985) 379–396. [CrossRef] [MathSciNet] [Google Scholar]
- M. Crandall and P.-L. Lions, Hamilton-Jacobi equations in infinite dimensions. II. Existence of viscosity solutions. J. Funct. Anal. 65 (1986) 368–405. [CrossRef] [MathSciNet] [Google Scholar]
- M. Crandall and P.-L. Lions, Hamilton-Jacobi equations in infinite dimensions. III. J. Funct. Anal. 68 (1986) 214–247. [CrossRef] [MathSciNet] [Google Scholar]
- M. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations in infinite dimensions. IV. Hamiltonians with unbounded linear terms. J. Funct. Anal. 90 (1990) 237–283. [CrossRef] [MathSciNet] [Google Scholar]
- M. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations in infinite dimensions. V. Unbounded linear terms and B-continuous solutions. J. Funct. Anal. 97 (1991) 417–465. [CrossRef] [MathSciNet] [Google Scholar]
- M. Crandall and P.-L. Lions, Hamilton-Jacobi equations in infinite dimensions. VI. Nonlinear A and Tataru's method refined, in Evolution equations, control theory, and biomathematics, Lect. Notes Pure Appl. Math. 155, Dekker, New York (1994) 51–89. [Google Scholar]
- I. Elsanosi, B. Øksendal and A. Sulem, Some solvable stochastic control problems with delay. Stochast. Stochast. Rep. 71 (2000) 69–89. [Google Scholar]
- G. Fabbri, Viscosity solutions to delay differential equations in demo-economy. Math. Popul. Stud. 15 (2008) 27–54. [CrossRef] [MathSciNet] [Google Scholar]
- G. Fabbri, S. Faggian and F. Gozzi, On dynamic programming in economic models governed by DDEs. Math. Popul. Stud. 15 (2008) 267–290. [CrossRef] [MathSciNet] [Google Scholar]
- S. Faggian and F. Gozzi, On the dynamic programming approach for optimal control problems of PDE's with age structure. Math. Popul. Stud. 11 (2004) 233–270. [CrossRef] [MathSciNet] [Google Scholar]
- F. Gozzi and C. Marinelli, Stochastic optimal control of delay equations arising in advertising models, in Stochastic partial differential equations and applications VII, Chapman & Hall, Boca Raton, Lect. Notes Pure Appl. Math. 245 (2006) 133–148. [Google Scholar]
- V.B. Kolmanovskii and L.E. Shaikhet, Control of systems with aftereffect, Translations of Mathematical Monographs. American Mathematical Society, Providence, USA (1996). [Google Scholar]
- B. Larssen and N.H. Risebro, When are HJB-equations in stochastic control of delay systems finite dimensional? Stochastic Anal. Appl. 21 (2003) 643–671. [CrossRef] [MathSciNet] [Google Scholar]
- L. Samassi and R. Tahraoui, Comment établir des conditions nécessaires d'optimalité dans les problèmes de contrôle dont certains arguments sont déviés ? C. R. Math. Acad. Sci. Paris 338 (2004) 611–616. [CrossRef] [MathSciNet] [Google Scholar]
- L. Samassi and R. Tahraoui, How to state necessary optimality conditions for control problems with deviating arguments? ESAIM: COCV 14 (2008) 381–409. [CrossRef] [EDP Sciences] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.