Free Access
Issue
ESAIM: COCV
Volume 16, Number 3, July-September 2010
Page(s) 618 - 634
DOI https://doi.org/10.1051/cocv/2009023
Published online 31 July 2009
  1. L. Afraites, M. Dambrine, K. Eppler and K. Kateb, Detecting perfectly insulated obstacles by shape optimization techniques of order two. Discret. Contin. Dyn. Syst. - série B 8 (2007) 389–416. [CrossRef] [Google Scholar]
  2. L. Afraites, M. Dambrine and D. Kateb, On second order shape optimization methods for electrical impedance tomography. SIAM J. Control Optim. 47 (2008) 1556–1590. [CrossRef] [MathSciNet] [Google Scholar]
  3. G. Allaire and F. Jouve, A level-set method for vibration and multiple loads in structural optimization. Comput. Methods Appl. Mech. Engrg. 194 (2005) 3269–3290. [CrossRef] [MathSciNet] [Google Scholar]
  4. G. Allaire, F. Jouve and A.-M. Toader, Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194 (2004) 363–393. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  5. P. Bernardoni, Outils et méthode de conception de structures mécaniques à déformations et actionnements répartis. Ph.D. Thesis, Université Paris VI, France (2004). [Google Scholar]
  6. D. Bucur, Do optimal shapes exist? Milan J. Math. 75 (2007) 379–398. [CrossRef] [MathSciNet] [Google Scholar]
  7. P. Cardaliaguet and O. Ley, Some flows in shape optimization. Arch. Ration. Mech. Anal. 183 (2007) 21–58. [CrossRef] [MathSciNet] [Google Scholar]
  8. P. Cardaliaguet and O. Ley, On the energy of a flow arising in shape optimization. Interfaces Free Bound. 10 (2008) 221–241. [Google Scholar]
  9. M. Dambrine, About the variations of the shape Hessian and sufficient conditions of stability for critical shapes. Revista Real Academia Ciencias-RACSAM 96 (2002) 95–121. [Google Scholar]
  10. M. Dambrine and M. Pierre, About stability of equilibrium shapes. ESAIM: M2AN 34 (2000) 811–834. [CrossRef] [EDP Sciences] [Google Scholar]
  11. F. de Gournay, Velocity extension for the level-set method and multiple eigenvalues in shape optimization. SIAM J. Control Optim. 45 (2006) 343–367. [CrossRef] [MathSciNet] [Google Scholar]
  12. M. Delfour and J.P. Zolesio, Shapes and Geometries: Analysis, Differential Calculus, and Optimization. SIAM (2001). [Google Scholar]
  13. J. Descloux, Stability of the solutions of the bidimensional magnetic shaping problem in abscence of surface tension. Eur. J. Mech. B Fluid. 10 (1991) 513–526. [Google Scholar]
  14. K. Eppler and H. Harbrecht, A regularized newton method in electrical impedance tomography using hessian information. Control Cybern. 34 (2005) 203–225. [Google Scholar]
  15. K. Eppler, H. Harbrecht and R. Schneider, On convergence in elliptic shape optimization. SIAM J. Control Optim. 46 (2007) 61–83. [CrossRef] [MathSciNet] [Google Scholar]
  16. A. Henrot and M. Pierre, Variation et optimisation de formes, Mathématiques et Applications 48. Springer (2005). [Google Scholar]
  17. F. Hettlich and W. Rundell, A second degree method for nonlinear inverse problems. SIAM J. Numer. Anal. 37 (1999) 587–620. [CrossRef] [Google Scholar]
  18. V. Isakov, Inverse problems for partial differential equations, Applied Mathematical Sciences 127. Springer (2006). [Google Scholar]
  19. A. Kisch, The domain derivative and two applications in inverse scattering theory. Inverse Problems 9 (1993) 81–96. [CrossRef] [MathSciNet] [Google Scholar]
  20. S. Osher and J.A. Sethian, Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79 (1988) 12–49. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.