Free Access
Issue
ESAIM: COCV
Volume 16, Number 3, July-September 2010
Page(s) 601 - 617
DOI https://doi.org/10.1051/cocv/2009012
Published online 18 June 2009
  1. J.F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems. Springer, New York (2000). [Google Scholar]
  2. J.V. Burke and S. Deng, Weak sharp minima revisited, Part I: Basic theory. Control Cybern. 31 (2002) 399–469. [Google Scholar]
  3. J.V. Burke and S. Deng, Weak sharp minima revisited, Part III: Error bounds for differentiable convex inclusions. Math. Program. 116 (2009) 37–56. [CrossRef] [MathSciNet] [Google Scholar]
  4. P.L. Combettes, Strong convergence of block-iterative outer approximation methods for convex optimzation. SIAM J. Control Optim. 38 (2000) 538–565. [CrossRef] [MathSciNet] [Google Scholar]
  5. A.L. Dontchev and R.T. Rockafellar, Regularity and conditioning of solution mappings in variational analysis. Set-Valued Anal. 12 (2004) 79–109. [CrossRef] [MathSciNet] [Google Scholar]
  6. A.L. Dontchev, A.S. Lewis and R.T. Rockafellar, The radius of metric regularity. Trans. Amer. Math. Soc. 355 (2003) 493–517. [CrossRef] [MathSciNet] [Google Scholar]
  7. R. Henrion and A. Jourani, Subdifferential conditions for calmness of convex constraints. SIAM J. Optim. 13 (2002) 520–534. [CrossRef] [MathSciNet] [Google Scholar]
  8. R. Henrion and J. Outrata, Calmness of constraint systems with applications. Math. Program. 104 (2005) 437–464. [CrossRef] [MathSciNet] [Google Scholar]
  9. R. Henrion, A. Jourani and J. Outrata, On the calmness of a class of multifunctions. SIAM J. Optim. 13 (2002) 603–618. [CrossRef] [MathSciNet] [Google Scholar]
  10. H. Hu, Characterizations of the strong basic constraint qualification. Math. Oper. Res. 30 (2005) 956–965. [CrossRef] [MathSciNet] [Google Scholar]
  11. H. Hu, Characterizations of local and global error bounds for convex inequalities in Banach spaces. SIAM J. Optim. 18 (2007) 309–321. [CrossRef] [MathSciNet] [Google Scholar]
  12. A.D. Ioffe, Metric regularity and subdifferential calculus. Russian Math. Surveys 55 (2000) 501–558. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  13. D. Klatte and B. Kummer, Nonsmooth Equations in Optimization, Regularity, Calculus, Methods and Applications; Nonconvex Optimization and its Application 60. Kluwer Academic Publishers, Dordrecht (2002). [Google Scholar]
  14. A. Lewis and J.S. Pang, Error bounds for convex inequality systems, in Generalized Convexity, Generalized Monotonicity: Recent Results, Proceedings of the Fifth Symposium on Generalized Convexity, Luminy, June 1996, J.-P. Crouzeix, J.-E. Martinez-Legaz and M. Volle Eds., Kluwer Academic Publishers, Dordrecht (1997) 75–100. [Google Scholar]
  15. W. Li, Abadie's constraint qualification, metric regularity, and error bounds for differentiable convex inequalities. SIAM J. Optim. 7 (1997) 966–978. [CrossRef] [MathSciNet] [Google Scholar]
  16. W. Li and I. Singer, Global error bounds for convex multifunctions and applications. Math. Oper. Res. 23 (1998) 443–462. [CrossRef] [MathSciNet] [Google Scholar]
  17. B.S. Mordukhovich, Complete characterization of openness, metric regularity, and Lipschitzian properties of multifunctions. Trans. Amer. Math. Soc. 340 (1993) 1–35. [CrossRef] [MathSciNet] [Google Scholar]
  18. K.F. Ng and X.Y. Zheng, Error bound for lower semicontinuous functions in normed spaces. SIAM J. Optim. 12 (2001) 1–17. [CrossRef] [MathSciNet] [Google Scholar]
  19. S.M. Robinson, Regularity and stability for convex multivalued fucntions. Math. Oper. Res. 1 (1976) 130–143. [CrossRef] [MathSciNet] [Google Scholar]
  20. C. Zalinescu, Weak sharp minima, well-behaving functions and global error bounds for convex inequalities in Banach spaces, in Proc. 12th Baical Internat. Conf. on Optimization Methods and their applications, Irkutsk, Russia (2001) 272–284. [Google Scholar]
  21. C. Zalinescu,Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002). [Google Scholar]
  22. C. Zalinescu, A nonlinear extension of Hoffman's error bounds for linear inequalities. Math. Oper. Res. 28 (2003) 524–532. [CrossRef] [MathSciNet] [Google Scholar]
  23. X.Y. Zheng and K.F. Ng, Metric regularity and constraint qualifications for convex inequalities on Banach spaces. SIAM J. Optim. 14 (2003) 757–772. [CrossRef] [MathSciNet] [Google Scholar]
  24. X.Y. Zheng and K.F. Ng, Metric subregularity and constraint qualifications for convex generalized equations in Banach spaces. SIAM. J. Optim. 18 (2007) 437–460. [CrossRef] [MathSciNet] [Google Scholar]
  25. X.Y. Zheng and K.F. Ng, Linear regularity for a collection of subsmooth sets in Banach spaces. SIAM J. Optim. 19 (2008) 62–76. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.