Free Access
Volume 16, Number 4, October-December 2010
Page(s) 929 - 955
DOI https://doi.org/10.1051/cocv/2009028
Published online 31 July 2009
  1. M. Badra, Stabilisation par feedback et approximation des équations de Navier-Stokes. Ph.D. Thesis, Université Paul Sabatier, Toulouse, France (2006). [Google Scholar]
  2. M. Badra, Lyapunov function and local feedback boundary stabilization of the Navier-Stokes equations. SIAM J. Control. (to appear). [Google Scholar]
  3. S.C. Beeler, H.T. Tran and H.T. Banks, Feedback control methodologies for nonlinear systems. J. Optim. Theory Appl. 107 (2000) 1–33. [CrossRef] [MathSciNet] [Google Scholar]
  4. F. Ben Belgacem, H. El Fekik and J.-P. Raymond, A penalized Robin approach for solving a parabolic equation with non smooth Dirichlet boundary conditions. Asymptotic Anal. 34 (2003) 121–136. [Google Scholar]
  5. A. Bensoussan, G. Da Prato, M.C. Delfour and S.K. Mitter, Representation and Control of Infinite Dimensional Systems, Vol. 1. Birkhäuser (1992). [Google Scholar]
  6. A. Bensoussan, G. Da Prato, M.C. Delfour and S.K. Mitter, Representation and Control of Infinite Dimensional Systems, Vol. 2. Birkhäuser (1993). [Google Scholar]
  7. E. Fernandez-Cara, S. Guerrero, O. Yu. Imanuvilov and J.-P. Puel, Local exact controllability of the Navier-Stokes system. J. Math. Pures Appl. 83 (2004) 1501–1542. [CrossRef] [MathSciNet] [Google Scholar]
  8. E. Fernandez-Cara, M. Gonzalez-Burgos, S. Guerrero and J.-P. Puel, Exact controllability to the trajectories of the heat equation with Fourier boundary conditions: the semilinear case. ESAIM: COCV 12 (2006) 466–483 (electronic). [CrossRef] [EDP Sciences] [Google Scholar]
  9. G. Grubb and V.A. Solonnikov, Boundary value problems for the nonstationary Navier-Stokes equations treated by pseudo-differential methods. Math. Scand. 69 (1991) 217–290. [MathSciNet] [Google Scholar]
  10. L. Hormander, Lectures on Nonlinear Hyperbolic Differential Equations. Springer (1997). [Google Scholar]
  11. M. Krstic, L. Magnis and R. Vazquez, Nonlinear stabilization of shock-like unstable equilibria in the viscous Burgers PDE. IEEE Trans. Automat. Contr. 53 (2008) 1678–1683. [CrossRef] [Google Scholar]
  12. I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations, Vol. 1. Cambridge University Press (2000). [Google Scholar]
  13. A.J. Laub, A Schur method method for solving algebraic Riccati equations. IEEE Trans. Automat. Contr. 24 (1979) 913–921. [Google Scholar]
  14. J.-L. Lions, Espaces d'interpolation et domaines de puissances fractionnaires d'opérateurs. J. Math. Soc. Japan 14 (1962) 233–241. [Google Scholar]
  15. J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes, Vol. 2. Dunod, Paris (1968). [Google Scholar]
  16. J.-P. Raymond, Boundary feedback stabilization of the two dimensional Navier-Stokes equations. SIAM J. Control Optim. 45 (2006) 790–828. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.