Free Access
Issue
ESAIM: COCV
Volume 16, Number 4, October-December 2010
Page(s) 887 - 928
DOI https://doi.org/10.1051/cocv/2009029
Published online 11 August 2009
  1. D. Aeyels and J. Peuteman, A new asymptotic stability criterion for nonlinear time-variant differential equations. IEEE Trans. Automat. Contr. 43 (1998) 968–971. [CrossRef] [Google Scholar]
  2. Z. Artstein, Stabilization with relaxed controls. Nonlinear Anal. Theory Methods Appl. 7 (1983) 1163–1173. [CrossRef] [MathSciNet] [Google Scholar]
  3. J.P. Aubin and H. Frankowska, Set-Valued Analysis. Birkhauser, Boston, USA (1990). [Google Scholar]
  4. F.H. Clarke, Y.S. Ledyaev, E.D. Sontag and A.I. Subbotin, Asymptotic controllability implies feedback stabilization. IEEE Trans. Automat. Contr. 42 (1997) 1394–1407. [CrossRef] [MathSciNet] [Google Scholar]
  5. J.-M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs 136. AMS, USA (2007). [Google Scholar]
  6. J.-M. Coron and L. Rosier, A relation between continuous time-varying and discontinuous feedback stabilization. J. Math. Syst. Estim. Contr. 4 (1994) 67–84. [Google Scholar]
  7. R.A. Freeman and P.V. Kokotovic, Robust Nonlinear Control Design-State Space and Lyapunov Techniques. Birkhauser, Boston, USA (1996). [Google Scholar]
  8. J.K. Hale and S.M.V. Lunel, Introduction to Functional Differential Equations. Springer-Verlag, New York, USA (1993). [Google Scholar]
  9. C. Hua, G. Feng and X. Guan, Robust controller design of a class of nonlinear time delay systems via backstepping methods. Automatica 44 (2008) 567–573. [CrossRef] [MathSciNet] [Google Scholar]
  10. M. Jankovic, Control Lyapunov-Razumikhin functions and robust stabilization of time delay systems. IEEE Trans. Automat. Contr. 46 (2001) 1048–1060. [Google Scholar]
  11. M. Jankovic, Stabilization of Nonlinear Time Delay Systems with Delay Independent Feedback, in Proceedings of the 2005 American Control Conference, Portland, OR, USA (2005) 4253–4258. [Google Scholar]
  12. Z.-P. Jiang, Y. Lin and Y. Wang, Stabilization of time-varying nonlinear systems: A control Lyapunov function approach, in Proceedings of IEEE International Conference on Control and Automation 2007, Guangzhou, China (2007) 404–409. [Google Scholar]
  13. I. Karafyllis, The non-uniform in time small-gain theorem for a wide class of control systems with outputs. Eur. J. Contr. 10 (2004) 307–323. [CrossRef] [Google Scholar]
  14. I. Karafyllis, Non-uniform in time robust global asymptotic output stability. Syst. Contr. Lett. 54 (2005) 181–193. [CrossRef] [MathSciNet] [Google Scholar]
  15. I. Karafyllis, Lyapunov theorems for systems described by retarded functional differential equations. Nonlinear Anal. Theory Methods Appl. 64 (2006) 590–617. [CrossRef] [Google Scholar]
  16. I. Karafyllis, A system-theoretic framework for a wide class of systems I: Applications to numerical analysis. J. Math. Anal. Appl. 328 (2007) 876–899. [CrossRef] [MathSciNet] [Google Scholar]
  17. I. Karafyllis and C. Kravaris, Robust output feedback stabilization and nonlinear observer design. Syst. Contr. Lett. 54 (2005) 925–938. [CrossRef] [MathSciNet] [Google Scholar]
  18. I. Karafyllis and J. Tsinias, A converse Lyapunov theorem for non-uniform in time global asymptotic stability and its application to feedback stabilization. SIAM J. Contr. Optim. 42 (2003) 936–965. [CrossRef] [Google Scholar]
  19. I. Karafyllis and J. Tsinias, Control Lyapunov functions and stabilization by means of continuous time-varying feedback. ESAIM: COCV 15 (2009) 599–625. [CrossRef] [EDP Sciences] [Google Scholar]
  20. I. Karafyllis, P. Pepe and Z.-P. Jiang, Global output stability for systems described by retarded functional differential equations: Lyapunov characterizations. Eur. J. Contr. 14 (2008) 516–536. [CrossRef] [Google Scholar]
  21. M. Krstic, I. Kanellakopoulos and P.V. Kokotovic, Nonlinear and Adaptive Control Design. John Wiley (1995). [Google Scholar]
  22. Y. Lin, E.D. Sontag and Y. Wang, A smooth converse Lyapunov theorem for robust stability. SIAM J. Contr. Optim. 34 (1996) 124–160. [CrossRef] [MathSciNet] [Google Scholar]
  23. F. Mazenc and P.-A. Bliman, Backstepping design for time-delay nonlinear systems. IEEE Trans. Automat. Contr. 51 (2006) 149–154. [CrossRef] [Google Scholar]
  24. F. Mazenc, M. Malisoff and Z. Lin, On input-to-state stability for nonlinear systems with delayed feedbacks, in Proceedings of the American Control Conference (2007), New York, USA (2007) 4804–4809. [Google Scholar]
  25. E. Moulay and W. Perruquetti, Stabilization of non-affine systems: A constructive method for polynomial systems. IEEE Trans. Automat. Contr. 50 (2005) 520–526. [CrossRef] [Google Scholar]
  26. S.K. Nguang, Robust stabilization of a class of time-delay nonlinear systems. IEEE Trans. Automat. Contr. 45 (2000) 756–762. [CrossRef] [Google Scholar]
  27. J. Peuteman and D. Aeyels, Exponential stability of nonlinear time-varying differential equations and partial averaging. Math. Contr. Signals Syst. 15 (2002) 42–70. [CrossRef] [Google Scholar]
  28. J. Peuteman and D. Aeyels, Exponential stability of slowly time-varying nonlinear systems. Math. Contr. Signals Syst. 15 (2002) 202–228. [CrossRef] [Google Scholar]
  29. L. Praly, G. Bastin, J.-B. Pomet and Z.P. Jiang, Adaptive stabilization of nonlinear systems, in Foundations of Adaptive Control, P.V. Kokotovic Ed., Springer-Verlag (1991) 374–433. [Google Scholar]
  30. E.D. Sontag, A universal construction of Artstein's theorem on nonlinear stabilization. Syst. Contr. Lett. 13 (1989) 117–123. [CrossRef] [MathSciNet] [Google Scholar]
  31. E.D. Sontag and Y. Wang, Notions of input to output stability. Syst. Contr. Lett. 38 (1999) 235–248. [CrossRef] [MathSciNet] [Google Scholar]
  32. E.D. Sontag, and Y. Wang, Lyapunov characterizations of input-to-output stability. SIAM J. Contr. Optim. 39 (2001) 226–249. [CrossRef] [Google Scholar]
  33. J. Tsinias, Sufficient Lyapunov-like conditions for stabilization. Math. Contr. Signals Syst. 2 (1989) 343–357. [CrossRef] [MathSciNet] [Google Scholar]
  34. J. Tsinias and N. Kalouptsidis, Output feedback stabilization. IEEE Trans. Automat. Contr. 35 (1990) 951–954. [CrossRef] [Google Scholar]
  35. S. Zhou, G. Feng and S.K. Nguang, Comments on robust stabilization of a class of time-delay nonlinear systems. IEEE Trans. Automat. Contr. 47 (2002) 1586–1586. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.