Free Access
Volume 17, Number 1, January-March 2011
Page(s) 117 - 130
Published online 30 October 2009
  1. J.A.D. Apleby, X. Mao and A. Rodkina, Stochastic stabilization of functional differential equations. Syst. Control Lett. 54 (2005) 1069–1081. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  2. J.A.D. Apleby, X. Mao and A. Rodkina, Stabilization and destabilization of nonlinear differential equations by noise. IEEE Trans. Automat. Contr. 53 (2008) 683–691. [CrossRef]
  3. L. Arnold, H. Craul and V. Wihstutz, Stabilization of linear systems by noise. SIAM J. Contr. Opt. 21 (1983) 451–461. [CrossRef] [MathSciNet]
  4. V. Barbu, Feedback stabilization of Navier-Stokes equations. ESAIM: COCV 9 (2003) 197–205. [EDP Sciences]
  5. V. Barbu and R. Triggiani, Internal stabilization of Navier-Stokes equations with finite dimensional controllers. Indiana Univ. Math. J. 53 (2004) 1443–1494. [CrossRef] [MathSciNet]
  6. V. Barbu, I. Lasiecka and R. Triggiani, Tangential boundary stabilization of Navier-Stokes equations, Memoires Amer. Math. Soc. AMS, USA (2006).
  7. T. Caraballo, K. Liu and X. Mao, On stabilization of partial differential equations by noise. Nagoya Math. J. 101 (2001) 155–170.
  8. T. Caraballo, H. Craul, J.A. Langa and J.C. Robinson, Stabilization of linear PDEs by Stratonovich noise. Syst. Control Lett. 53 (2004) 41–50. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  9. S. Cerrai, Stabilization by noise for a class of stochastic reaction-diffusion equations. Prob. Th. Rel. Fields 133 (2000) 190–214. [CrossRef]
  10. G. Da Prato, An Introduction to Infinite Dimensional Analysis. Springer-Verlag, Berlin, Germany (2006).
  11. H. Ding, M. Krstic and R.J. Williams, Stabilization of stochastic nonlinear systems driven by noise of unknown covariance. IEEE Trans. Automat. Contr. 46 (2001) 1237–1253. [CrossRef]
  12. J. Duan and A. Fursikov, Feedback stabilization for Oseen Fluid Equations. A stochastic approach. J. Math. Fluids Mech. 7 (2005) 574–610. [CrossRef]
  13. A. Fursikov, Real processes of the 3-D Navier-Stokes systems and its feedback stabilization from the boundary, in AMS Translations, Partial Differential Equations, M. Vîshnik Seminar 206, M.S. Agranovic and M.A. Shubin Eds. (2002) 95–123.
  14. A. Fursikov, Stabilization for the 3-D Navier-Stokes systems by feedback boundary control. Discrete Contin. Dyn. Syst. 10 (2004) 289-314. [CrossRef] [MathSciNet]
  15. T. Kato, Perturbation Theory of Linear Operators. Springer-Verlag, New York, Berlin (1966).
  16. S. Kuksin and A. Shirikyan, Ergodicity for the randomly forced 2D Navier-Stokes equations. Math. Phys. Anal. Geom. 4 (2001) 147–195. [CrossRef] [MathSciNet]
  17. T. Kurtz, Lectures on Stochastic Analysis. Lecture Notes Online, Wisconsin (2007), available at
  18. R. Lipster and A.N. Shiraev, Theory of Martingals. Dordrecht, Kluwer (1989).
  19. X.R. Mao, Stochastic stabilization and destabilization. Syst. Control Lett. 23 (2003) 279–290. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  20. J.P. Raymond, Feedback boundary stabilization of the two dimensional Navier-Stokes equations. SIAM J. Contr. Opt. 45 (2006) 790–828. [CrossRef] [MathSciNet]
  21. J.P. Raymond, Feedback boundary stabilization of the three dimensional incompressible Navier-Stokes equations. J. Math. Pures Appl. 87 (2007) 627–669. [CrossRef] [MathSciNet]
  22. A. Shirikyan, Exponential mixing 2D Navier-Stokes equations perturbed by an unbounded noise. J. Math. Fluids Mech. 6 (2004) 169–193. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.