Free Access
Issue
ESAIM: COCV
Volume 17, Number 1, January-March 2011
Page(s) 131 - 154
DOI https://doi.org/10.1051/cocv/2009044
Published online 04 December 2009
  1. W. Allard, On the first variation of a varifold. Ann. Math. 95 (1972) 417–491. [CrossRef] [Google Scholar]
  2. G. Bellettini and L. Mugnai, Characterization and representation of the lower semicontinuous envelope of the elastica functional. Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004) 839–880. [CrossRef] [MathSciNet] [Google Scholar]
  3. G. Bellettini and L. Mugnai, A varifolds representation of the relaxed elastica functional. Journal of Convex Analysis 14 (2007) 543–564. [MathSciNet] [Google Scholar]
  4. T. D'Aprile, Behaviour of symmetric solutions of a nonlinear elliptic field equation in the semi-classical limit: Concentration around a circle. Electronic J. Differ. Equ. 2000 (2000) 1–40. [Google Scholar]
  5. A. Doelman and H. van der Ploeg, Homoclinic stripe patterns. SIAM J. Appl. Dyn. Syst. 1 (2002) 65–104. [CrossRef] [MathSciNet] [Google Scholar]
  6. I. Fonseca and W. Gangbo, Degree Theory in Analysis and Applications. Oxford University Press Inc., New York, USA (1995). [Google Scholar]
  7. O. Gonzalez and J. Maddocks, Global curvature, thickness, and the ideal shape of knots. Proc. Natl. Acad. Sci. USA 96 (1999) 4769–4773. [CrossRef] [MathSciNet] [Google Scholar]
  8. J. Hutchinson, Second fundamental form for varifolds and the existence of surfaces minimising curvature. Indiana Univ. Math. J. 35 (1986) 45–71. [CrossRef] [MathSciNet] [Google Scholar]
  9. M. Kac, Can one hear the shape of a drum? Amer. Math. Monthly 73 (1966) 1–23. [CrossRef] [Google Scholar]
  10. M.A. Peletier and M. Röger, Partial localization, lipid bilayers, and the elastica functional. Arch. Rational Mech. Anal. 193 (2008) 475–537. [CrossRef] [Google Scholar]
  11. N. Sidorova and O. Wittich, Construction of surface measures for Brownian motion, in Trends in stochastic analysis: a Festschrift in honour of Heinrich von Weizsäcker, LMS Lecture Notes 353, Cambridge UP (2009) 123–158. [Google Scholar]
  12. Y. van Gennip and M.A. Peletier, Copolymer-homopolymer blends: global energy minimisation and global energy bounds. Calc. Var. Part. Differ. Equ. 33 (2008) 75–111. [CrossRef] [Google Scholar]
  13. Y. van Gennip and M.A. Peletier, Stability of monolayers and bilayers in a copolymer-homopolymer blend model. Interfaces Free Bound. 11 (2009) 331–373. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.