Free Access
Issue
ESAIM: COCV
Volume 17, Number 1, January-March 2011
Page(s) 243 - 266
DOI https://doi.org/10.1051/cocv/2010003
Published online 24 March 2010
  1. L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs. Oxford University Press, New York, USA (2000). [Google Scholar]
  2. C. Amrouche, P.G. Ciarlet and P. Ciarlet, Jr., Vector and scalar potentials, Poincaré's theorem and Korn's inequality. C. R. Math. Acad. Sci. Paris 345 (2007) 603–608. [CrossRef] [MathSciNet] [Google Scholar]
  3. H. Attouch, G. Buttazzo and G. Michaille, Variational analysis in Sobolev and BV spaces, MPS/SIAM Series on Optimization 6. Society for Industrial and Applied Mathematics, Philadelphia, USA (2006). [Google Scholar]
  4. H. Brezis, Analyse fonctionnelle, Collection Mathématiques Appliquées pour la Maîtrise. Masson, Paris, France (1983). [Google Scholar]
  5. G. Chavent and K. Kunisch, Regularization of linear least squares problems by total bounded variation. ESAIM: COCV 2 (1997) 359–376. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  6. I. Ekeland and R. Témam, Convex analysis and variational problems. Society for Industrial and Applied Mathematics, Philadelphia, USA (1999). [Google Scholar]
  7. M. Hintermüller and G. Stadler, An infeasible primal-dual algorithm for total bounded variation-based inf-convolution-type image restoration. SIAM J. Sci. Comput. 28 (2006) 1–23. [CrossRef] [MathSciNet] [Google Scholar]
  8. M. Hintermüller, K. Ito and K. Kunisch, The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13 (2002) 865–888. [Google Scholar]
  9. K. Ito and K. Kunisch, Lagrange multiplier approach to variational problems and applications, Advances in Design and Control 15. Society for Industrial and Applied Mathematics, Philadelphia, USA (2008). [Google Scholar]
  10. W. Ring, Structural properties of solutions to total variation regularization problems. ESAIM: M2AN 34 (2000) 799–810. [CrossRef] [EDP Sciences] [Google Scholar]
  11. G. Stadler, Elliptic optimal control problems with L1-control cost and applications for the placement of control devices. Comp. Optim. Appl. 44 (2009) 159–181. [Google Scholar]
  12. G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier (Grenoble) 15 (1965) 189–258. [CrossRef] [MathSciNet] [Google Scholar]
  13. R. Témam, Navier-Stokes equations. AMS Chelsea Publishing, Providence, USA (2001). [Google Scholar]
  14. M. Ulbrich, Semismooth Newton methods for operator equations in function spaces. SIAM J. Optim. 13 (2002) 805–842. [CrossRef] [MathSciNet] [Google Scholar]
  15. G. Vossen and H. Maurer, On L1-minimization in optimal control and applications to robotics. Optimal Control Appl. Methods 27 (2006) 301–321. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.