Free Access
Issue
ESAIM: COCV
Volume 17, Number 1, January-March 2011
Page(s) 28 - 51
DOI https://doi.org/10.1051/cocv/2009035
Published online 11 August 2009
  1. M.K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations. Networks and Heterogenous Media 1 (2006) 295–314. [MathSciNet] [Google Scholar]
  2. M.K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks. Networks and Heterogenous Media 1 (2006) 41–56. [MathSciNet] [Google Scholar]
  3. C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30 (2002) 1024–1065. [Google Scholar]
  4. G. Bastin, J.-M. Coron and B. d'Andrea-Novel, On Lyapunov stability of linearised Saint-Venant equations for a sloping channel. Networks and Heterogenous Media 4 (2009). [Google Scholar]
  5. N.H. Chen, An explicit equation for friction factor in pipe. Ind. Eng. Chem. Fund. 18 (1979) 296–297. [Google Scholar]
  6. R.M. Colombo, G. Guerra, M. Herty and V. Schleper, Optimal control in networks of pipes and canals. SIAM J. Control Optim. 48 (2009) 2032–2050. [CrossRef] [MathSciNet] [Google Scholar]
  7. J.-M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs 136. AMS, Providence (2007). [Google Scholar]
  8. J.-M. Coron, B. d'Andréa-Novel and G. Bastin, A Lyapunov approach to control irrigation canals modeled by the Saint-Venant equations, in Proc. Eur. Control Conf., Karlsruhe, Germany (1999). [Google Scholar]
  9. J.-M. Coron, B. d'Andréa-Novel and G. Bastin, On boundary control design for quasi-linear hyperbolic systems with entropies as Lyapunov functions, in Proc. 41st IEEE Conf. Decision Control, Las Vegas, USA (2002). [Google Scholar]
  10. J.-M. Coron, B. d'Andréa-Novel, G. Bastin and L. Moens, Boundary control for exact cancellation of boundary disturbances in hyperbolic systems of conservation laws, in Proc. 44st IEEE Conf. Decision Control, Seville, Spain (2005). [Google Scholar]
  11. J.-M. Coron, B. d'Andréa-Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws. IEEE Trans. Automat. Contr. 52 (2007) 2–11. [Google Scholar]
  12. J.-M. Coron, G. Bastin and B. d'Andréa-Novel, Dissipative boundary conditions for one dimensional nonlinear hyperbolic systems. SIAM J. Control Optim. 47 (2008) 1460–1498. [CrossRef] [MathSciNet] [Google Scholar]
  13. J. de Halleux, C. Prieur, J.-M. Coron, B. d'Andréa-Novel and G. Bastin, Boundary feedback control in networks of open channels. Automatica 39 (2003) 1365–1376. [Google Scholar]
  14. K. Ehrhardt and M. Steinbach, Nonlinear gas optimization in gas networks, in Modeling, Simulation and Optimization of Complex Processes, H.G. Bock, E. Kostina, H.X. Pu and R. Rannacher Eds., Springer Verlag, Berlin, Germany (2005). [Google Scholar]
  15. M. Gugat and G. Leugering, Global boundary controllability of the de St. Venant equations between steady states. Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003) 1–11. [Google Scholar]
  16. M. Gugat and G. Leugering, Global boundary controllability of the Saint-Venant system for sloped canals with friction. Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009) 257–270. [Google Scholar]
  17. M. Gugat, G. Leugering and E.J.P.G. Schmidt, Global controllability between steady supercritical flows in channel networks. Math. Meth. Appl. Sci. 27 (2004) 781–802. [CrossRef] [Google Scholar]
  18. M. Herty, Coupling conditions for networked systems of Euler equations. SIAM J. Sci. Comp. 30 (2007) 1596–1612. [CrossRef] [Google Scholar]
  19. M. Herty and V. Sachers, Adjoint calculus for optimization of gas networks. Networks and Heterogeneous Media 2 (2007) 733–750. [CrossRef] [MathSciNet] [Google Scholar]
  20. G. Leugering and E.J.P.G. Schmidt, On the modeling and stabilization of flows in networks of open canals. SIAM J. Control Optim. 41 (2002) 164–180. [CrossRef] [MathSciNet] [Google Scholar]
  21. T.-T. Li, Exact controllability for quasilinear hyperbolic systems and its application to unsteady flows in a network of open canals. Math. Meth. Appl. Sci. 27 (2004) 1089–1114. [CrossRef] [Google Scholar]
  22. T.-T. Li, Exact boundary controllability of unsteady flows in a network of open canals. Math. Nachr. 278 (2005) 310–329. [Google Scholar]
  23. T.-T. Li and Y. Jin, Semi-global C2 solution to the mixed initial-boundary value problem for quasilinear hyperbolic systems. Chin. Ann. Math. B 22 (2001) 325–336. [CrossRef] [Google Scholar]
  24. T.-T. Li and B. Rao, [Exact boundary controllability of unsteady flows in a tree-like network of open canals]. C. R. Acad. Sci. Paris Ser. I 339 (2004) 867–872. [Google Scholar]
  25. T.-T. Li and Z. Wang, Global exact boundary controllability for first order quasilinear hyperbolic systems of diagonal form. Int. J. Dynamical Systems Differential Equations 1 (2007) 12–19. [CrossRef] [Google Scholar]
  26. T.-T. Li and W.-C. Yu, Boundary value problems for quasilinear hyperbolic systems, Duke University Mathematics Series V. Durham, NC, USA (1985). [Google Scholar]
  27. A. Martin, M. Möller and S. Moritz, Mixed integer models for the stationary case of gas network optimization. Math. Programming 105 (2006) 563–582. [CrossRef] [Google Scholar]
  28. E. Menon, Gas Pipeline Hydraulics. Taylor and Francis, Boca Raton (2005). [Google Scholar]
  29. A. Osiadacz, Simulation of transient flow in gas networks. Int. J. Numer. Meth. Fluids 4 (1984) 13–23. [Google Scholar]
  30. A.J. Osciadacz, Simulation and Analysis of Gas Networks. Gulf Publishing Company, Houston (1987). [Google Scholar]
  31. A.J. Osciadacz, Different Transient Models – Limitations, advantages and disadvantages, in 28th Annual Meeting of PSIG (Pipeline Simulation Interest Group), San Francisco, California, USA (1996). [Google Scholar]
  32. Pipeline Simulation Interest Group, www.psig.org. [Google Scholar]
  33. M. Steinbach, On PDE Solution in Transient Optimization of Gas Networks. Technical Report ZR-04-46, ZIB Berlin, Germany (2004). [Google Scholar]
  34. Z. Vostrý, Transient Optimization of gas transport and distribution, in Proceedings of the 2nd International Workshop SIMONE on Innovative Approaches to Modelling and Optimal Control of Large Scale Pipelines, Prague, Czech Republic (1993) 53–62. [Google Scholar]
  35. Z. Wang, Exact controllability for nonautonomous first order quasilinear hyperbolic systems. Chin. Ann. Math. B 27 (2006) 643–656. [CrossRef] [MathSciNet] [Google Scholar]
  36. F.M. White, Fluid Mechanics. McGraw–Hill, New York, USA (2002). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.