Free Access
Issue
ESAIM: COCV
Volume 17, Number 2, April-June 2011
Page(s) 410 - 445
DOI https://doi.org/10.1051/cocv/2010014
Published online 31 March 2010
  1. J. Berstel and C. Reutenauer, Rational series and their languages, EATCS Monographs on Theoretical Computer Science. Springer-Verlag (1984). [Google Scholar]
  2. M.F. Callier and A.C. Desoer, Linear System Theory. Springer-Verlag (1991). [Google Scholar]
  3. P. D'Alessandro, A. Isidori and A. Ruberti, Realization and structure theory of bilinear dynamical systems. SIAM J. Control 12 (1974) 517–535. [CrossRef] [MathSciNet] [Google Scholar]
  4. S. Eilenberg, Automata, Languages and Machines. Academic Press, New York-London (1974). [Google Scholar]
  5. M. Fliess, Matrices de Hankel. J. Math. Pures Appl. 53 (1974) 197–222. [MathSciNet] [Google Scholar]
  6. M. Fliess, Realizations of nonlinear systems and abstract transitive Lie algebras. Bull. Amer. Math. Soc. 2 (1980) 444–446. [CrossRef] [MathSciNet] [Google Scholar]
  7. M. Fliess, Fonctionnelles causales non linéaires et indéterminées non commutatives. Bull. Soc. Math. France 109 (1981) 3–40. [MathSciNet] [Google Scholar]
  8. F. Gécseg and I. Peák, Algebraic theory of automata. Akadémiai Kiadó, Budapest (1972). [Google Scholar]
  9. A. Isidori, Direct construction of minimal bilinear realizations from nonlinear input-output maps. IEEE Trans. Automat. Contr. AC-18 (1973) 626–631. [Google Scholar]
  10. A. Isidori, Nonlinear Control Systems. Springer-Verlag (1989). [Google Scholar]
  11. N. Jacobson, Lectures in Abstract Algebra, Vol. II: Linear algebra. D. van Nostrand Company, Inc., New York (1953). [Google Scholar]
  12. B. Jakubczyk, Existence and uniqueness of realizations of nonlinear systems. SIAM J. Control Optim. 18 (1980) 455–471. [CrossRef] [MathSciNet] [Google Scholar]
  13. B. Jakubczyk, Realization theory for nonlinear systems, three approaches, in Algebraic and Geometric Methods in Nonlinear Control Theory, M. Fliess and M. Hazewinkel Eds., D. Reidel Publishing Company (1986) 3–32. [Google Scholar]
  14. W. Kuich and A. Salomaa, Semirings, Automata, Languages, in EATCS Monographs on Theoretical Computer Science, Springer-Verlag (1986). [Google Scholar]
  15. D. Liberzon, Switching in Systems and Control. Birkhäuser, Boston (2003). [Google Scholar]
  16. M. Petreczky, Realization theory for linear switched systems, in Proceedings of the Sixteenth International Symposium on Mathematical Theory of Networks and Systems (2004). [ Draft available at http://www.cwi.nl/~mpetrec.] [Google Scholar]
  17. M. Petreczky, Realization theory for bilinear hybrid systems, in 11th IEEE Conference on Methods and Models in Automation and Robotics (2005). [CD-ROM only.] [Google Scholar]
  18. M. Petreczky, Realization theory for bilinear switched systems, in Proceedings of 44th IEEE Conference on Decision and Control (2005). [CD-ROM only.] [Google Scholar]
  19. M. Petreczky, Hybrid formal power series and their application to realization theory of hybrid systems, in 17th International Symposium on Mathematical Networks and Systems (2006). [Google Scholar]
  20. M. Petreczky, Realization Theory of Hybrid Systems. Ph.D. Thesis, Vrije Universiteit, Amsterdam (2006). [Available online at: http://www.cwi.nl/~mpetrec.] [Google Scholar]
  21. M. Petreczky, Realization theory for linear switched systems: Formal power series approach. Syst. Control Lett. 56 (2007) 588–595. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  22. C. Reutenauer, The local realization of generating series of finite lie-rank, in Algebraic and Geometric Methods in Nonlinear Control Theory, M. Fliess and M. Hazewinkel Eds., D. Reidel Publishing Company (1986) 33–43. [Google Scholar]
  23. M.-P. Schtzenberger, On the definition of a family of automata. Inf. Control 4 (1961) 245–270. [CrossRef] [Google Scholar]
  24. E.D. Sontag, Polynomial Response Maps, Lecture Notes in Control and Information Sciences 13. Springer Verlag (1979). [Google Scholar]
  25. E.D. Sontag, Realization theory of discrete-time nonlinear systems: Part I – The bounded case. IEEE Trans. Circuits Syst. 26 (1979) 342–356. [CrossRef] [Google Scholar]
  26. Z. Sun, S.S. Ge and T.H. Lee, Controllability and reachability criteria for switched linear systems. Automatica 38 (2002) 115–786. [CrossRef] [Google Scholar]
  27. H. Sussmann, Existence and uniqueness of minimal realizations of nonlinear systems. Math. Syst. Theory 10 (1977) 263–284. [CrossRef] [Google Scholar]
  28. Y. Wang and E. Sontag, Algebraic differential equations and rational control systems. SIAM J. Control Optim. 30 (1992) 1126–1149. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.