Free Access
Volume 17, Number 2, April-June 2011
Page(s) 506 - 551
Published online 23 April 2010
  1. V. Barbu, I. Lasiecka and R. Triggiani, Extended algebraic Riccati equations in the abstract hyperbolic case. Nonlinear Anal. 40 (2000) 105–129. [CrossRef] [MathSciNet] [Google Scholar]
  2. A. Bensoussan, G. Da. Prato, M.C. Delfour and S.K. Mitter, Representation and Control of Infinite Dimensional Systems, Systems & Control: Fondations & Applications 2. Boston, Birkhäuser (1993). [Google Scholar]
  3. J.-M. Buchot, Stabilization of the laminar turbulent transition location, in Proceedings MTNS 2000, El Jaï Ed. (2000). [Google Scholar]
  4. J.-M. Buchot, Stabilisation et contrôle optimal des équations de Prandtl. Ph.D. Thesis, École supérieure d'Aéronautique et de l'Espace, Toulouse (2002). [Google Scholar]
  5. J.-M. Buchot and J.-P. Raymond, A linearized model for boundary layer equations, in International Series of Numerical Mathematics 139, Birkhäuser (2001) 31–42. [Google Scholar]
  6. J.-M. Buchot and J.-P. Raymond, A linearized Crocco equation. J. Math. Fluid Mech. 8 (2006) 510–541. [CrossRef] [MathSciNet] [Google Scholar]
  7. J.-M. Buchot and J.-P. Raymond, Feedback stabilization of a boundary layer equation – Part 2: Nonhomogeneous state equation and numerical experiments. Appl. Math. Res. eXpress (2010) doi:10.1093/amrx/abp007. [Google Scholar]
  8. R. Dautray and J.-L. Lions, Analyse mathématique et calcul numérique 4. Masson, Paris (1988). [Google Scholar]
  9. F. Flandoli, Algebric Riccati Equations arising in boundary control problems. SIAM J. Control Optim. 25 (1987) 612–636. [CrossRef] [MathSciNet] [Google Scholar]
  10. F. Flandoli, I. Lasiecka and R. Triggiani, Algebraic Riccati Equations with non-smoothing observation arising in hyperbolic and Euler-Bernoulli boundary control problems. Ann. Math. Pura Appl. 153 (1988) 307–382. [CrossRef] [Google Scholar]
  11. I. Lasiecka and R. Triggiani, Control theory for partial differential equations I, Abstract parabolic systems. Cambridge University Press, Cambridge (2000). [Google Scholar]
  12. I. Lasiecka and R. Triggiani, Optimal Control and Algebraic Riccati Equations under Singular Estimates for eAtB in the Abscence of Analycity, Part I: The stable case, in Lecture Notes in Pure in Applied Mathematics 225, Marcel Dekker (2002) 193–219. [Google Scholar]
  13. J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes. Dunod, Paris (1968). [Google Scholar]
  14. O.A. Oleinik and V.N. Samokhin, Mathematical Models in Boundary Layer Theory, Applied Mathematics and Mathematical Computation 15. Chapman & Hall/CRC, Boca Raton, London, New York (1999). [Google Scholar]
  15. A.J. Pritchard and D. Salamon, The linear quadratic control of problem for infinite dimensional systems with unbounded input and output operators. SIAM J. Control Optim. 25 (1987) 121–144. [CrossRef] [MathSciNet] [Google Scholar]
  16. H. Triebel, Interpolation theory, Functions spaces, Differential operators. North Holland (1978). [Google Scholar]
  17. R. Triggiani, An optimal control problem with unbounded control operator and unbounded observation operator where Algebraic Riccati Equation is satisfied as a Lyapunov equation. Appl. Math. Letters 10 (1997) 95–102. [CrossRef] [Google Scholar]
  18. R. Triggiani, The Algebraic Riccati Equation with unbounded control operator: The abstract hyperbolic case revisited. Contemporary mathematics 209 (1997) 315–338. [Google Scholar]
  19. G. Weiss and H. Zwart, An example in LQ optimal control. Syst. Control Lett. 33 (1998) 339–349. [CrossRef] [Google Scholar]
  20. Z. Xin and L. Zhang, On the global existence of solutions to the Prandtl's system. Adv. Math. 181 (2004) 88–133. [CrossRef] [MathSciNet] [Google Scholar]
  21. J. Zabczyck, Mathematical Control Theory. Birkhäuser (1995). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.