Free Access
Issue
ESAIM: COCV
Volume 17, Number 2, April-June 2011
Page(s) 493 - 505
DOI https://doi.org/10.1051/cocv/2010002
Published online 24 March 2010
  1. J.M. Ball, Some open problems in elasticity, in Geometry, mechanics, and dynamics, Springer, New York, USA (2002) 3–59. [Google Scholar]
  2. P.G. Ciarlet, Mathematical Elasticity, Vol. 3: Theory of Shells. North-Holland, Amsterdam (2000). [Google Scholar]
  3. G. Dal Maso, An introduction to Γ-convergence, Progress in Nonlinear Differential Equations and their Applications 8. Birkhäuser, USA (1993). [Google Scholar]
  4. G. Friesecke, R. James and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity. Comm. Pure. Appl. Math. 55 (2002) 1461–1506. [Google Scholar]
  5. G. Friesecke, R. James and S. Müller, A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence. Arch. Ration. Mech. Anal. 180 (2006) 183–236. [CrossRef] [MathSciNet] [Google Scholar]
  6. H. LeDret and A. Raoult, The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl. 73 (1995) 549–578. [Google Scholar]
  7. M. Lewicka and M. Pakzad, The infinite hierarchy of elastic shell models: some recent results and a conjecture. Preprint (2009) http://arxiv.org/abs/0907.1585. [Google Scholar]
  8. M. Lewicka, M.G. Mora and M.R. Pakzad, The matching property of infinitesimal isometries on elliptic surfaces and elasticity of thin shells. Preprint (2008) http://arxiv.org/abs/0811.2238. [Google Scholar]
  9. M. Lewicka, M.G. Mora and M.R. Pakzad, A nonlinear theory for shells with slowly varying thickness. C. R. Acad. Sci. Paris, Sér. I 347 (2009) 211–216. [Google Scholar]
  10. M. Lewicka, M.G. Mora and M.R. Pakzad, Shell theories arising as low energy Γ-limit of 3d nonlinear elasticity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (to appear). [Google Scholar]
  11. A.E.H. Love, A treatise on the mathematical theory of elasticity. 4th Edn., Cambridge University Press, Cambridge, UK (1927). [Google Scholar]
  12. M.G. Mora and S. Müller, Convergence of equilibria of three-dimensional thin elastic beams. Proc. Roy. Soc. Edinburgh Sect. A 138 (2008) 873–896. [MathSciNet] [Google Scholar]
  13. M.G. Mora and L. Scardia, Convergence of equilibria of thin elastic plates under physical growth conditions for the energy density. Preprint (2008). [Google Scholar]
  14. M.G. Mora, S. Müller and M.G. Schultz, Convergence of equilibria of planar thin elastic beams. Indiana Univ. Math. J. 56 (2007) 2413–2438. [CrossRef] [MathSciNet] [Google Scholar]
  15. S. Müller and M.R. Pakzad, Convergence of equilibria of thin elastic plates – the von Kármán case. Comm. Part. Differ. Equ. 33 (2008) 1018–1032. [CrossRef] [Google Scholar]
  16. M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. V. Second Edn., Publish or Perish Inc., Australia (1979). [Google Scholar]
  17. T. von Kármán, Festigkeitsprobleme im Maschinenbau, in Encyclopädie der Mathematischen Wissenschaften IV. B.G. Teubner, Leipzig, Germany (1910) 311–385. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.