Free Access
Volume 17, Number 3, July-September 2011
Page(s) 771 - 800
Published online 06 August 2010
  1. N. Arada, E. Casas and F. Tröltzsch, Error estimates for the numerical approximation of a semilinear elliptic control problem. Comput. Optim. Appl. 23 (2002) 201–229. [CrossRef] [MathSciNet] [Google Scholar]
  2. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York-Berlin-Heidelberg (1984). [Google Scholar]
  3. E. Casas and V. Dhamo, Error estimates for the numerical approximation of a quasilinear Neumann problem under minimal regularity of the data. (Submitted). [Google Scholar]
  4. E. Casas and M. Mateos, Uniform convergence of the FEM. Applications to state constrained control problems. Comp. Appl. Math. 21 (2007) 67–100. [Google Scholar]
  5. E. Casas and F. Tröltzsch, Optimality conditions for a class of optimal control problems with quasilinear elliptic equations. SIAM J. Control Optim. 48 (2009) 688–718. [CrossRef] [MathSciNet] [Google Scholar]
  6. P. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). [Google Scholar]
  7. J. Douglas, Jr. and T. Dupont, A Galerkin method for a nonlinear Dirichlet problem. Math. Comp. 29 (1975) 689–696. [CrossRef] [MathSciNet] [Google Scholar]
  8. M. Hinze, A variational discretization concept in control constrained optimization: The linear-quadratic case. Comput. Optim. Appl. 30 (2005) 45–61. [Google Scholar]
  9. I. Hlaváček, Reliable solution of a quasilinear nonpotential elliptic problem of a nonmonotone type with respect to the uncertainty in coefficients. J. Math. Anal. Appl. 212 (1997) 452–466. [CrossRef] [MathSciNet] [Google Scholar]
  10. I. Hlaváček, M. Křížek and J. Malý, On Galerkin approximations of quasilinear nonpotential elliptic problem of a nonmonotone type. J. Math. Anal. Appl. 184 (1994) 168–189. [CrossRef] [MathSciNet] [Google Scholar]
  11. L. Liu, M. Křížek and P. Neittaanmäki, Higher order finite element approximation of a quasilinear elliptic boundary value problem of a non-monotone type. Appl. Math. 41 (1996) 467–478. [MathSciNet] [Google Scholar]
  12. R. Rannacher and R. Scott, Some optimal error estimates for piecewise finite element approximations. Math. Comp. 38 (1982) 437–445. [Google Scholar]
  13. P. Raviart and J. Thomas, Introduction à l'Analyse Numérique des Équations aux Dérivées Partielles. Masson, Paris (1983). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.