Free Access
Issue
ESAIM: COCV
Volume 17, Number 3, July-September 2011
Page(s) 603 - 647
DOI https://doi.org/10.1051/cocv/2010018
Published online 23 April 2010
  1. R. Adams, Sobolev Spaces. Academic Press (1975). [Google Scholar]
  2. G. Alberti, G. Bouchitté and P. Seppecher, Phase transition with the line tension effect. Arch. Rational Mech. Anal. 144 (1998) 1–46. [CrossRef] [MathSciNet] [Google Scholar]
  3. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Clarendon Press, Oxford (2000). [Google Scholar]
  4. J. Ball, A version of the fundamental theorem for Young measures, in PDEs and continuum models of phase transitions (Nice, 1988), Lecture Notes in Phys. 344, Springer, Berlin (1989) 207–215. [Google Scholar]
  5. R. Choksi and R. Kohn, Bounds on the micromagnetic energy of a uniaxial ferromagnet. Comm. Pure Appl. Math. 51 (1998) 259–289. [CrossRef] [MathSciNet] [Google Scholar]
  6. R. Choksi, R. Kohn and F. Otto, Domain branching in uniaxial ferromagnets: a scaling law for the minimum energy. Comm. Math. Phys. 201 (1999) 61–79. [CrossRef] [MathSciNet] [Google Scholar]
  7. R. Choksi, R. Kohn and F. Otto, Energy minimization and flux domain structure in the intermediate state of a type-I superconductor. J. Nonlinear Sci. 14 (2004) 119–171. [CrossRef] [MathSciNet] [Google Scholar]
  8. R. Choksi, S. Conti, R. Kohn and F. Otto, Ground state energy scaling laws during the onset and destruction of the intermediate state in a type I superconductor. Comm. Pure Appl. Math. 61 (2008) 595–626. [CrossRef] [MathSciNet] [Google Scholar]
  9. S. Conti, I. Fonseca and G. Leoni, A Γ-convergence result for the two-gradient theory of phase transitions. Comm. Pure Applied Math. 55 (2002) 857–936. [Google Scholar]
  10. G. Dal Maso, An Introduction to Γ-Convergence. Birkhäuser (1993). [Google Scholar]
  11. E. DiBenedetto, Real Analysis. Birkhäuser (2002). [Google Scholar]
  12. L. Evans and R. Gariepy, Measure Theory and fine Properties of Functions. CRC Press (1992). [Google Scholar]
  13. I. Fonseca and G. Leoni, Modern methods in the calculus of variations: Lp spaces, Springer Monographs in Mathematics. Springer (2007). [Google Scholar]
  14. I. Fonseca and C. Mantegazza, Second order singular perturbation models for phase transitions. SIAM J. Math. Anal. 31 (2000) 1121–1143. [CrossRef] [MathSciNet] [Google Scholar]
  15. E. Gagliardo, Ulteriori prorietà di alcune classi di funzioni in più variabili. Ric. Mat. 8 (1959) 24–51. [Google Scholar]
  16. A. Garroni and G. Palatucci, A singular perturbation result with a fractional norm, in Variational problems in materials science, Progr. Nonlinear Differential Equations Appl. 68, Birkhäuser, Basel (2006) 111–126. [Google Scholar]
  17. E. Giusti, Minimal Surfaces and Functions of Bounded Variation. Birkhäuser (1984). [Google Scholar]
  18. E. Hebey, Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities. AMS/CIMS (1999). [Google Scholar]
  19. M. Miranda, D. Pallara, F. Paronetto and M. Preunkert, Heat semigroup and functions of bounded variation on Riemannian manifolds. J. Reine Angew. Math. 613 (2007) 99–119. [CrossRef] [MathSciNet] [Google Scholar]
  20. L. Modica, The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal. 98 (1987) 123–142. [CrossRef] [MathSciNet] [Google Scholar]
  21. L. Modica, The gradient theory of phase transitions with boundary contact energy. Ann. Inst. Henri Poincaré, Anal. non linéaire 4 (1987) 487–512. [Google Scholar]
  22. L. Modica and S. Mortola, Un esempio de Γ--convergenza. Boll. Un. Mat. Ital. B 14 (1977) 285–299. [MathSciNet] [Google Scholar]
  23. S. Müller, Variational models for microstructure and phase transitions, in Calculus of variations and geometric evolution problems (Cetraro, 1996), Lecture Notes in Math. 1713, Springer (1999) 85–210. [Google Scholar]
  24. L. Nirenberg, An extended interpolation inequality. Ann. Sc. Normale Pisa - Scienze fisiche e matematiche 20 (1966) 733–737. [Google Scholar]
  25. E. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton University Press (1970). [Google Scholar]
  26. L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear analysis and mechanics: Heriot-Watt Symposium IV, Res. Notes in Math. 39, Pitman, Boston (1979) 136–212. [Google Scholar]
  27. W. Ziemer, Weakly differentiable functions – Sobolev spaces and functions of bounded variation, Graduate Texts in Mathematics 120. Springer-Verlag, New York (1989). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.