Free Access
Issue
ESAIM: COCV
Volume 17, Number 4, October-December 2011
Page(s) 1158 - 1173
DOI https://doi.org/10.1051/cocv/2010039
Published online 28 October 2010
  1. E. Calabi and P. Hartman, On the smoothness of isometries. Duke Math. J. 37 (1970) 741–750. [CrossRef] [MathSciNet] [Google Scholar]
  2. G. Dal Maso, An introduction to Γ-convergence, Progress in Nonlinear Differential Equations and their Applications 8. Birkhäuser (1993). [Google Scholar]
  3. E. Efrati, E. Sharon and R. Kupferman, Elastic theory of unconstrained non-Euclidean plates. J. Mech. Phys. Solids 57 (2009) 762–775. [CrossRef] [MathSciNet] [Google Scholar]
  4. G. Friesecke, R. James and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity. Comm. Pure Appl. Math. 55 (2002) 1461–1506. [CrossRef] [MathSciNet] [Google Scholar]
  5. G. Friesecke, R. James, M.G. Mora and S. Müller, Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by Gamma-convergence. C. R. Math. Acad. Sci. Paris 336 (2003) 697–702. [CrossRef] [MathSciNet] [Google Scholar]
  6. G. Friesecke, R. James and S. Müller, A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence. Arch. Ration. Mech. Anal. 180 (2006) 183–236. [CrossRef] [MathSciNet] [Google Scholar]
  7. M. Gromov, Partial Differential Relations. Springer-Verlag, Berlin-Heidelberg (1986). [Google Scholar]
  8. P. Guan and Y. Li, The Weyl problem with nonnegative Gauss curvature. J. Diff. Geometry 39 (1994) 331–342. [Google Scholar]
  9. Q. Han and J.-X. Hong, Isometric embedding of Riemannian manifolds in Euclidean spaces, Mathematical Surveys and Monographs 130. American Mathematical Society, Providence (2006). [Google Scholar]
  10. J.-X. Hong and C. Zuily, Isometric embedding of the 2-sphere with nonnegative curvature in Formula . Math. Z. 219 (1995) 323–334. [CrossRef] [MathSciNet] [Google Scholar]
  11. J.A. Iaia, Isometric embeddings of surfaces with nonnegative curvature in Formula . Duke Math. J. 67 (1992) 423–459. [CrossRef] [MathSciNet] [Google Scholar]
  12. Y. Klein, E. Efrati and E. Sharon, Shaping of elastic sheets by prescription of non-Euclidean metrics. Science 315 (2007) 1116–1120. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  13. N.H. Kuiper, On C1 isometric embeddings. I. Indag. Math. 17 (1955) 545–556. [Google Scholar]
  14. N.H. Kuiper, On C1 isometric embeddings. II. Indag. Math. 17 (1955) 683–689. [Google Scholar]
  15. M. Lewicka, M.G. Mora and M.R. Pakzad, A nonlinear theory for shells with slowly varying thickness. C.R. Acad. Sci. Paris, Ser. I 347 (2009) 211–216. [Google Scholar]
  16. M. Lewicka, M.G. Mora and M.R. Pakzad, Shell theories arising as low energy Γ-limit of 3d nonlinear elasticity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. IX (2010) 1–43. [Google Scholar]
  17. F.C. Liu, A Lusin property of Sobolev functions. Indiana U. Math. J. 26 (1977) 645–651. [CrossRef] [Google Scholar]
  18. A.V. Pogorelov, An example of a two-dimensional Riemannian metric which does not admit a local realization in E3. Dokl. Akad. Nauk. SSSR (N.S.) 198 (1971) 42–43. [Soviet Math. Dokl. 12 (1971) 729–730.] [Google Scholar]
  19. M. Spivak, A Comprehensive Introduction to Differential Geometry. Third edition, Publish or Perish Inc. (1999). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.