Free Access
Issue
ESAIM: COCV
Volume 18, Number 1, January-March 2012
Page(s) 1 - 21
DOI https://doi.org/10.1051/cocv/2010048
Published online 02 December 2010
  1. F. Alouges, T. Rivière and S. Serfaty, Néel and cross-tie wall energies for planar micromagnetic configurations. ESAIM : COCV 8 (2002) 31–68. [CrossRef] [EDP Sciences] [Google Scholar]
  2. W.F. Brown, Micromagnetics. Interscience Publisher, John Willey and Sons, New York (1963). [Google Scholar]
  3. G. Carbou, Regularity for critical points of a nonlocal energy. Calc. Var. 5 (1997) 409–433. [Google Scholar]
  4. G. Carbou, Thin layers in micromagnetism. Math. Models Methods Appl. Sci. 11 (2001) 1529–1546. [Google Scholar]
  5. G. Carbou and P. Fabrie, Time average in micromagnetism. J. Differ. Equ. 147 (1998) 383–409. [CrossRef] [Google Scholar]
  6. G. Carbou and P. Fabrie, Regular solutions for Landau-Lifschitz equation in a bounded domain. Differential Integral Equations 14 (2001) 213–229. [MathSciNet] [Google Scholar]
  7. G. Carbou and P. Fabrie, Regular solutions for Landau-Lifschitz equation in R3. Commun. Appl. Anal. 5 (2001) 17–30. [MathSciNet] [Google Scholar]
  8. G. Carbou and S. Labbé, Stability for static walls in ferromagnetic nanowires. Discrete Continous Dyn. Syst. Ser. B 6 (2006) 273–290. [CrossRef] [Google Scholar]
  9. G. Carbou, S. Labbé and E. Trélat, Control of travelling walls in a ferromagnetic nanowire. Discrete Contin. Dyn. Syst. Ser. S 1 (2008) 51–59. [MathSciNet] [Google Scholar]
  10. A. DeSimone, R.V. Kohn, S. Müller and F. Otto, Magnetic microstructures – a paradigm of multiscale problems, in ICIAM 99 (Edinburgh), Oxford Univ. Press, Oxford (2000) 175–190. [Google Scholar]
  11. L. Halpern and S. Labbé, Modélisation et simulation du comportement des matériaux ferromagnétiques. Matapli 66 (2001) 70–86. [Google Scholar]
  12. T. Kapitula, Multidimensional stability of planar travelling waves. Trans. Amer. Math. Soc. 349 (1997) 257–269. [CrossRef] [MathSciNet] [Google Scholar]
  13. K. Kühn, Travelling waves with a singularity in magnetic nanowires. Commun. Partial Diff. Equ. 34 (2009) 722–764. [CrossRef] [Google Scholar]
  14. S. Labbé, Simulation numérique du comportement hyperfréquence des matériaux ferromagnétiques. Thèse de l’Université Paris 13, Paris (1998). [Google Scholar]
  15. S. Labbé and P.-Y. Bertin, Microwave polarisability of ferrite particles with non-uniform magnetization. J. Magn. Magn. Mater. 206 (1999) 93–105. [CrossRef] [Google Scholar]
  16. T. Rivière and S. Serfaty, Compactness, kinetic formulation, and entropies for a problem related to micromagnetics. Commun. Partial Diff. Equ. 28 (2003) 249–269. [CrossRef] [MathSciNet] [Google Scholar]
  17. D. Sanchez, Méthodes asymptotiques en ferromagnétisme. Thèse de l’Université Bordeaux 1, Bordeaux (2004). [Google Scholar]
  18. A. Thiaville, J.M. Garcia and J. Miltat, Domain wall dynamics in nanowires. J. Magn. Magn. Mater. 242–245 (2002) 1061–1063. [CrossRef] [Google Scholar]
  19. A. Visintin, On Landau Lifschitz equation for ferromagnetism. Japan Journal of Applied Mathematics 1 (1985) 69–84. [CrossRef] [MathSciNet] [Google Scholar]
  20. H. Wynled, Ferromagnetism, Encyclopedia of Physics XVIII/2. Springer-Verlag, Berlin (1966). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.