Free Access
Volume 18, Number 1, January-March 2012
Page(s) 22 - 35
Published online 02 December 2010
  1. R.F. Curtain, The Salamon-Weiss class of well-posed infinite dimensional linear systems : a survey. IMA J. Math. Control Inform. 14 (1997) 207–223. [CrossRef] [MathSciNet]
  2. R. Datko, Two questions concerning the boundary control of certain elastic systems. J. Diff. Equ. 92 (1991) 27–44. [CrossRef]
  3. R. Datko, Is boundary control a realistic approach to the stabilization of vibrating elastic systems?, in Evolution Equations, Baton Rouge (1992), Lecture Notes in Pure and Appl. Math. 168, Dekker, New York (1995) 133–140.
  4. R. Datko, Two examples of ill-posedness with respect to time delays revisited. IEEE Trans. Automat. Control 42 (1997) 511–515. [CrossRef] [MathSciNet]
  5. R. Datko and Y.C. You, Some second-order vibrating systems cannot tolerate small time delays in their damping. J. Optim. Theory Appl. 70 (1991) 521–537. [CrossRef] [MathSciNet]
  6. R. Datko, J. Lagnese and M.P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations. SIAM J. Control Optim. 24 (1986) 152–156. [CrossRef] [MathSciNet]
  7. A.J. Deguenon, G. Sallet and C.Z. Xu, A Kalman observer for infinite-dimensional skew-symmetric systems with application to an elastic beam, Proc. of the Second International Symposium on Communications, Control and Signal Processing, Marrakech, Morocco (2006).
  8. W.H. Fleming Ed., Future Directions in Control Theory. SIAM, Philadelphia (1988).
  9. I. Gumowski and C. Mira, Optimization in Control Theory and Practice. Cambridge University Press, Cambridge (1968).
  10. B.Z. Guo and Y.H. Luo, Controllability and stability of a second order hyperbolic system with collocated sensor/actuator. Syst. Control Lett. 46 (2002) 45–65. [CrossRef] [MathSciNet] [PubMed]
  11. B.Z. Guo and Z.C. Shao, Stabilization of an abstract second order system with application to wave equations under non-collocated control and observations. Syst. Control Lett. 58 (2009) 334–341. [CrossRef] [MathSciNet] [PubMed]
  12. B.Z. Guo and C.Z. Xu, The stabilization of a one-dimensional wave equation by boundary feedback with non-collocated observation. IEEE Trans. Automat. Contr. 52 (2007) 371–377. [CrossRef]
  13. B.Z. Guo and K.Y. Yang, Dynamic stabilization of an Euler-Bernoulli beam equation with time delay in boundary observation. Automatica 45 (2009) 1468–1475. [CrossRef] [MathSciNet]
  14. B.Z. Guo, J.M. Wang and K.Y. Yang, Dynamic stabilization of an Euler-Bernoulli beam under boundary control and non-collocated observation. Syst. Control Lett. 57 (2008) 740–749. [CrossRef] [MathSciNet] [PubMed]
  15. I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations : Continuous and Approxiamation Theories – II : Abstract Hyperbolic-Like Systems over a Finite Time Horizon. Cambridge University Press, Cambridge (2000).
  16. H. Logemann, R. Rebarber and G. Weiss, Conditions for robustness and nonrobustness of the stability of feedback systems with respect to small delays in the feedback loop. SIAM J. Control Optim. 34 (1996) 572–600. [CrossRef] [MathSciNet]
  17. S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J. Control Optim. 45 (2006) 1561–1585. [CrossRef] [MathSciNet]
  18. F. Oberhettinger and L. Badii, Tables of Laplace Transforms. Springer-Verlag, Berlin (1973).
  19. A. Smyshlyaev and M. Krstic, Backstepping observers for a class of parabolic PDEs. Syst. Control Lett. 54 (2005) 613–625. [CrossRef] [MathSciNet] [PubMed]
  20. L.N. Trefethen, Spectral Methods in Matlab. SIAM, Philadelphia (2000).
  21. M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups. Birkhäuser, Basel (2009).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.