Free Access
Volume 18, Number 2, April-June 2012
Page(s) 401 - 426
Published online 13 April 2011
  1. O. Alvarez and A. Tourin, Viscosity solutions of nonlinear integro-differential equations. Ann. Inst. Henri Poincaré, Anal. non linéaire 13 (1996) 293-317.
  2. J.-P. Aubin, Viability Theory. Birkhäuser (1992).
  3. J.-P. Aubin and G. Da Prato, Stochastic viability and invariance. Ann. Sc. Norm. Pisa 27 (1990) 595–694.
  4. J.-P. Aubin and H. Frankowska, Set Valued Analysis. Birkhäuser (1990).
  5. M. Bardi and I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi- Bellman equations. Systems and Control : Foundations and Applications, Birkhäuser (1997).
  6. M. Bardi and P. Goatin, Invariant sets for controlled degenerate diffusions : a viscosity solutions approach, in Stochastic analysis, control, optimization and applications, Systems Control Found. Appl., Birkhäuser, Boston, MA (1999) 191–208.
  7. M. Bardi and R. Jensen, A geometric characterization of viable sets for controlled degenerate diffusions. Set-Valued Anal. 10 (2002) 129–141. [CrossRef] [MathSciNet]
  8. G. Barles and C. Imbert, Second-order elliptic integro-differential equations : Viscosity solutions theory revisited. Ann. Inst. Henri Poincaré, Anal. non linéaire 25 (2008) 567–585. [CrossRef]
  9. G. Barles and E.R. Jakobsen, On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations. ESAIM : M2AN 36 (2002) 33–54. [CrossRef] [EDP Sciences]
  10. R. Buckdahn, S. Peng, M. Quincampoix and C. Rainer, Existence of stochastic control under state constraints. C. R. Acad. Sci. Paris Sér. I Math. 327 (1998) 17–22. [CrossRef] [MathSciNet]
  11. R. Buckdahn, D. Goreac and M. Quincampoix, Stochastic optimal control and linear programming approach. Appl. Math. Opt. 63 (2011) 257–276. [CrossRef] [MathSciNet]
  12. D.L. Cook, A.N. Gerber and S.J. Tapscott, Modelling stochastic gene expression : Implications for haploinsufficiency. Proc. Natl. Acad. Sci. USA 95 (1998) 15641–15646. [CrossRef]
  13. A. Crudu, A. Debussche and O. Radulescu, Hybrid stochastic simplifications for multiscale gene networks. BMC Systems Biology 3 (2009).
  14. M.H.A. Davis, Markov Models and Optimization, Monographs on Statistics and Applied probability 49. Chapman & Hall (1993).
  15. M. Delbrück, Statistical fluctuations in autocatalytic reactions. J. Chem. Phys. 8 (1940) 120–124. [CrossRef]
  16. S. Gautier and L. Thibault, Viability for constrained stochastic differential equations. Differential Integral Equations 6 (1993) 1395–1414. [MathSciNet]
  17. J. Hasty, J. Pradines, M. Dolnik and J.J. Collins, Noise-based switches and amplifiers for gene expression. PNAS 97 (2000) 2075–2080. [CrossRef] [PubMed]
  18. H.M. Soner, Optimal control with state-space constraint. II. SIAM J. Control Optim. 24 (1986) 1110–1122. [CrossRef] [MathSciNet]
  19. X. Zhu and S. Peng, The viability property of controlled jump diffusion processes. Acta Math. Sinica 24 (2008) 1351–1368. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.