Free Access
Issue
ESAIM: COCV
Volume 18, Number 2, April-June 2012
Page(s) 383 - 400
DOI https://doi.org/10.1051/cocv/2010102
Published online 13 April 2011
  1. F. Alouges, T. Riviere and S. Serfaty, Neel and cross-tie wall energies for planar micromagnetic configurations. ESAIM : COCV 8 (2002) 31–68. [CrossRef] [EDP Sciences]
  2. L. Ambrosio, C. Delellis and C. Mantegazza, Line energies for gradient vector fields in the plane. Calc. Var. Partial Differential Equations 9 (1999) 327–355. [CrossRef] [MathSciNet]
  3. L. Ambrosio, M. Lecumberry and T. Riviere, Viscosity property of minimizing micromagnetic configurations. Commun. Pure Appl. Math. 56 (2003) 681–688. [CrossRef]
  4. P. Aviles and Y. Giga, A mathematical problem related to the physical theory of liquid crystal configurations, in Miniconference on geometry and partial differential equations 2, Canberra (1986) 1–16, Proc. Centre Math. Anal. Austral. Nat. Univ. 12, Austral. Nat. Univ., Canberra (1987).
  5. P. Aviles and Y. Giga, The distance function and defect energy. Proc. Soc. Edinb. Sect. A 126 (1996) 923–938. [CrossRef]
  6. P. Aviles and Y. Giga, On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg-Landau type energy for gradient fields. Proc. Soc. Edinb. Sect. A 129 (1999) 1–17. [CrossRef]
  7. G. Carbou, Regularity for critical points of a nonlocal energy. Calc. Var. 5 (1997) 409–433. [CrossRef] [MathSciNet]
  8. S. Conti, A. DeSimone, S. Müller, R. Kohn and F. Otto, Multiscale modeling of materials – the role of analysis, in Trends in nonlinear analysis, Springer, Berlin (2003) 375–408.
  9. A. DeSimone, S. Müller, R. Kohn and F. Otto, A compactness result in the gradient theory of phase transitions. Proc. Soc. Edinb. Sect. A 131 (2001) 833–844. [CrossRef] [MathSciNet]
  10. A. DeSimone, S. Müller, R. Kohn and F. Otto, A reduced theory for thin-film micromagnetics. Commun. Pure Appl. Math. 55 (2002) 1408–1460. [CrossRef]
  11. L.C. Evans, Partial differential equations, Graduate Studies in Mathematics 19. American Mathematical Society (1998).
  12. L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions. Studies in Advanced Mathematics, CRC Press (1992).
  13. G. Gioia and M. Ortiz, The morphology and folding patterns of buckling-driven thin-film blisters. J. Mech. Phys. Solids 42 (1994) 531–559. [CrossRef] [MathSciNet]
  14. R. Hardt and D. Kinderlehrer, Some regularity results in ferromagnetism. Commun. Partial Differ. Equ. 25 (2000) 1235–1258. [CrossRef]
  15. R. Ignat and F. Otto, A compactness result in thin-film micromagnetics and the optimality of the Néel wall. J. Eur. Math. Soc. (JEMS) 10 (2008) 909–956. [CrossRef] [MathSciNet]
  16. P. Jabin, F. Otto and B. Perthame, Line-energy Ginzburg-Landau models : zero-energy states. Ann. Sc. Norm. Super. Pisa Cl. Sci. 1 (2002) 187–202. [MathSciNet]
  17. W. Jin and R.V. Kohn, Singular perturbation and the energy of folds. J. Nonlinear Sci. 10 (2000) 355–390. [CrossRef] [MathSciNet]
  18. A. Lorent, A quantitative characterisation of functions with low Aviles Giga energy on convex domains. Ann. Sc. Norm. Super. Pisa Cl. Sci. (submitted). Available at http://arxiv.org/abs/0902.0154v1.
  19. T. Riviere and S. Serfaty, Limiting domain wall energy for a problem related to micromagnetics. Commun. Pure Appl. Math. 54 (2001) 294–338. [CrossRef] [MathSciNet]
  20. E.M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series 30. Princeton University Press (1970).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.