Free Access
Issue
ESAIM: COCV
Volume 18, Number 2, April-June 2012
Page(s) 383 - 400
DOI https://doi.org/10.1051/cocv/2010102
Published online 13 April 2011
  1. F. Alouges, T. Riviere and S. Serfaty, Neel and cross-tie wall energies for planar micromagnetic configurations. ESAIM : COCV 8 (2002) 31–68. [CrossRef] [EDP Sciences] [Google Scholar]
  2. L. Ambrosio, C. Delellis and C. Mantegazza, Line energies for gradient vector fields in the plane. Calc. Var. Partial Differential Equations 9 (1999) 327–355. [CrossRef] [MathSciNet] [Google Scholar]
  3. L. Ambrosio, M. Lecumberry and T. Riviere, Viscosity property of minimizing micromagnetic configurations. Commun. Pure Appl. Math. 56 (2003) 681–688. [CrossRef] [Google Scholar]
  4. P. Aviles and Y. Giga, A mathematical problem related to the physical theory of liquid crystal configurations, in Miniconference on geometry and partial differential equations 2, Canberra (1986) 1–16, Proc. Centre Math. Anal. Austral. Nat. Univ. 12, Austral. Nat. Univ., Canberra (1987). [Google Scholar]
  5. P. Aviles and Y. Giga, The distance function and defect energy. Proc. Soc. Edinb. Sect. A 126 (1996) 923–938. [CrossRef] [Google Scholar]
  6. P. Aviles and Y. Giga, On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg-Landau type energy for gradient fields. Proc. Soc. Edinb. Sect. A 129 (1999) 1–17. [CrossRef] [Google Scholar]
  7. G. Carbou, Regularity for critical points of a nonlocal energy. Calc. Var. 5 (1997) 409–433. [CrossRef] [MathSciNet] [Google Scholar]
  8. S. Conti, A. DeSimone, S. Müller, R. Kohn and F. Otto, Multiscale modeling of materials – the role of analysis, in Trends in nonlinear analysis, Springer, Berlin (2003) 375–408. [Google Scholar]
  9. A. DeSimone, S. Müller, R. Kohn and F. Otto, A compactness result in the gradient theory of phase transitions. Proc. Soc. Edinb. Sect. A 131 (2001) 833–844. [CrossRef] [MathSciNet] [Google Scholar]
  10. A. DeSimone, S. Müller, R. Kohn and F. Otto, A reduced theory for thin-film micromagnetics. Commun. Pure Appl. Math. 55 (2002) 1408–1460. [CrossRef] [Google Scholar]
  11. L.C. Evans, Partial differential equations, Graduate Studies in Mathematics 19. American Mathematical Society (1998). [Google Scholar]
  12. L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions. Studies in Advanced Mathematics, CRC Press (1992). [Google Scholar]
  13. G. Gioia and M. Ortiz, The morphology and folding patterns of buckling-driven thin-film blisters. J. Mech. Phys. Solids 42 (1994) 531–559. [CrossRef] [MathSciNet] [Google Scholar]
  14. R. Hardt and D. Kinderlehrer, Some regularity results in ferromagnetism. Commun. Partial Differ. Equ. 25 (2000) 1235–1258. [CrossRef] [Google Scholar]
  15. R. Ignat and F. Otto, A compactness result in thin-film micromagnetics and the optimality of the Néel wall. J. Eur. Math. Soc. (JEMS) 10 (2008) 909–956. [CrossRef] [MathSciNet] [Google Scholar]
  16. P. Jabin, F. Otto and B. Perthame, Line-energy Ginzburg-Landau models : zero-energy states. Ann. Sc. Norm. Super. Pisa Cl. Sci. 1 (2002) 187–202. [MathSciNet] [Google Scholar]
  17. W. Jin and R.V. Kohn, Singular perturbation and the energy of folds. J. Nonlinear Sci. 10 (2000) 355–390. [CrossRef] [MathSciNet] [Google Scholar]
  18. A. Lorent, A quantitative characterisation of functions with low Aviles Giga energy on convex domains. Ann. Sc. Norm. Super. Pisa Cl. Sci. (submitted). Available at http://arxiv.org/abs/0902.0154v1. [Google Scholar]
  19. T. Riviere and S. Serfaty, Limiting domain wall energy for a problem related to micromagnetics. Commun. Pure Appl. Math. 54 (2001) 294–338. [CrossRef] [MathSciNet] [Google Scholar]
  20. E.M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series 30. Princeton University Press (1970). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.