Free Access
Issue
ESAIM: COCV
Volume 18, Number 3, July-September 2012
Page(s) 774 - 798
DOI https://doi.org/10.1051/cocv/2011181
Published online 14 October 2011
  1. E. Aranda-Bricaire, C.H. Moog and J.-B. Pomet, Infinitesimal Brunovský form for nonlinear systems with applications to Dynamic Linearization, Geometry in nonlinear control and differential inclusions 32, edited by B. Jakuczyk, W. Respondek and T. Rzeżuchowski. Banach Center Publications, Warsaw (1995) 19–33. [Google Scholar]
  2. R. Bryant, S.-S. Chern, R. Gardner, H. Goldschmidt and P. Griffiths, Exterior Differential Systems. Mathematical Sciences Research Institute Publications, Springer-Verlag, New York (1991). [Google Scholar]
  3. E. Cartan, Sur l’équivalence absolue de certains systèmes d’équations différentielles et sur certaines familles de courbes, Bulletin de la Société Mathématique de France 42, Œuvres complètes 2. Part. II, Gauthiers-Villars, Paris (1914) 12–48. [Google Scholar]
  4. M. Cheaito and P. Mormul, Rank-2 distributions satisfying the Goursat condition :all their local models in dimension 7 and 8. ESAIM : COCV 4 (1999) 137–158. [CrossRef] [EDP Sciences] [Google Scholar]
  5. M. Fliess, J. Lévine, P. Martin and P. Rouchon, Sur les systèmes non linéaires différentiellement plats. C. R. Acad. Sci. 315 (1992) 619–624. [Google Scholar]
  6. M. Fliess, J. Lévine, P. Martin and P. Rouchon, Flatness and defect of nonlinear systems : Introductory theory and examples. Int. J. Control 61 (1995) 1327–1361. [CrossRef] [MathSciNet] [Google Scholar]
  7. M. Fliess, J. Lévine, P. Martin and P. Rouchon, A Lie-Bäcklund approach to equivalence and flatness of nonlinear systems. IEEE Trans. Automat. Control 61 (1999) 1327–1361. [Google Scholar]
  8. A. Giaro, A. Kumpera and C. Ruiz, Sur la lecture correcte d’un resultat d’Élie Cartan. C. R. Acad. Sci. Paris 287 (1978) 241–244. [MathSciNet] [Google Scholar]
  9. E. Goursat, Leçons sur le problème de Pfaff. Hermann, Paris (1923). [Google Scholar]
  10. D. Hilbert, Über den Begriff der Klasse von Differentialgleichungen. Math. Ann. 73 (1912) 95–108. [CrossRef] [MathSciNet] [Google Scholar]
  11. A. Isidori. Nonlinear Control Systems, 3rd edition. Springer-Verlag, London (1995). [Google Scholar]
  12. A. Isidori, C.H. Moog and A. de Luca. A sufficient condition for full linearization via dynamic state feedback, in Proc. 25th IEEE Conf. on Decision & Control. Athens (1986) 203–207. [Google Scholar]
  13. B. Jakubczyk, Invariants of dynamic feedback and free systems, in Proceedings of the European Control Conference. Groningen (1993) 1510–1513. [Google Scholar]
  14. F. Jean, The car with n trailers : Characterisation of the singular configurations. ESAIM : COCV 1 (1996) 241–266. [CrossRef] [EDP Sciences] [Google Scholar]
  15. A. Kumpera and C. Ruiz, Sur l’équivalence locale des systèmes de Pfaff en drapeau, in Monge-Ampère equations and related topics, edited by F. Gherardelli. Instituto Nazionale di Alta Matematica Francesco Severi, Rome (1982) 201–247. [Google Scholar]
  16. J.P. Laumond, Controllability of a multibody robot. IEEE Trans. Robot. Autom. 9 (1991) 755–763. [CrossRef] [Google Scholar]
  17. J.P. Laumond, Robot Motion Planning and Control, Lecture Notes on Control and Information Sciences 229. Springer-Verkag, New York (1997). [Google Scholar]
  18. Z. Li and J.F. Canny Eds., Nonholonomic Motion Plannging. Internqtional Series in Engineering and Computer Sciences, Kluwer, Dordrecht (1992). [Google Scholar]
  19. P. Martin and P. Rouchon, Feedback linearization and driftless systems. CAS internal report No. 446, École des Mines (1993). [Google Scholar]
  20. P. Martin and P. Rouchon, Feedback linearization and driftless systems. Math. Contr. Signals Syst. 7 (1994) 235–254. [CrossRef] [MathSciNet] [Google Scholar]
  21. P. Martin, R.M. Murray and P. Rouchon, Flat systems, in Mathematical Control Theory, Part 2, ICTP Lecture Notes 8, edited by A.A. Agrachev. ICTP Publications, Trieste (2002) 705–768. [Google Scholar]
  22. P. Mormul, Goursat flags : classification of codimension-one singularities. J. Dyn. Control Syst. 6 (2000) 311–330. [CrossRef] [Google Scholar]
  23. R. Murray, Nilpotent bases for a class of nonintegrable distributions with applications to trajectory generation for nonholonomic systems. Math. Control Signals Syst. 7 (1994) 58–75. [CrossRef] [MathSciNet] [Google Scholar]
  24. R. Murray and S. Sastry, Nonholonomic motion planning : Steering using sinusoids. IEEE Trans. Autom. Control 38 (1993) 700–716. [CrossRef] [MathSciNet] [Google Scholar]
  25. W. Pasillas-Lépine and W. Respondek, On the geometry of control systems equivalent to canonical contact systems : regular points, singular points and flatness, Proceedings of the 39th IEEE Conference of Decision and Control. Sydney, Australia (2000) 5151–5156. [Google Scholar]
  26. W. Pasillas-Lépine and W. Respondek, On the geometry of Goursat structures. ESAIM : COCV 6 (2001) 119–181. [CrossRef] [EDP Sciences] [Google Scholar]
  27. P.S. Pereira da Silva, and C. Corrêa Filho, Relative flatness and flatness of implicit systems. SIAM J. Control Optim. 39 (2001) 1929–1951. [CrossRef] [MathSciNet] [Google Scholar]
  28. J.-B. Pomet, A differential geometric setting for dynamic equivalence and dynamic linearization, in Geometry in Nonlinear Control and Differential Inclusions 32, edited by B. Jakubczyk, W. Respondek and T. Rzeżuchowski. Banach Center Publications, Warsaw (1995) 319–339. [Google Scholar]
  29. W. Respondek, Symmetries and minimal flat outputs of nonlinear control systems, in New Trends in Nonlinear Dynamics and Control, and their Applications, Lecture Notes on Control and Information Sciences 295, edited by W. Kang, M. Xiao and C. Borges. Springer Verlag, Berlin, Heidelberg (2003) 65–86. [Google Scholar]
  30. O.J. Sørdalen, Conversion of the kinematics of a car with n trailers into a chained form, Proceeding of 1993 International Conference on Robotics and Automation, Atlanta, CA (1993) 382–387. [Google Scholar]
  31. M. van Nieuwstadt, M. Rathinam and R.M. Murray, Differential Flatness and Absolute Equivalence of Nonlinear Control Systems. SIAM J. Control Optim. 36 (1998) 1225–1239. [CrossRef] [MathSciNet] [Google Scholar]
  32. E. von Weber, Zur Invariantentheorie der Systeme Pfaff’scher Gleichungen. Berichte Verhandlungen der Koniglich Sachsischen Gesellshaft der Wissenshaften Mathematisch-Physikalische Klasse, Leipzig 50 (1898) 207–229. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.