Free Access
Issue
ESAIM: COCV
Volume 18, Number 4, October-December 2012
Page(s) 915 - 929
DOI https://doi.org/10.1051/cocv/2011188
Published online 22 November 2011
  1. J.P. Aubin and G. Da Prato, Stochastic viability and invariance. Ann. Scuola Norm. Super. Pisa Cl. Sci. 27 (1990) 595–694. [Google Scholar]
  2. F. Biagini, Y. Hu, B. Øksendal and T. Zhang, Stochastic calculus for fractional Brownian motion and applications. Springer (2006). [Google Scholar]
  3. R. Buckdahn, M. Quincampoix and A. Rascanu, Propriété de viabilité pour des équations différentielles stochastiques rétrogrades et applications à des équations aux derivées partielles. C. R. Acad. Sci. Paris Sér. I 325 (1997) 1159–1162. [Google Scholar]
  4. R. Buckdahn, S. Peng, M. Quincampoix and C. Rainer, Existence of stochastic control under state constraints. C. R. Acad. Sci. Paris Sér. I 327 (1998) 17–22. [Google Scholar]
  5. R. Buckdahn, M. Quincampoix and A. Rascanu, Viability property for backward stochastic differential equation and applications to partial differential equation. Probab. Theory Relat. Fields 116 (2000) 485–504. [CrossRef] [Google Scholar]
  6. R. Buckdahn, M. Quincampoix, C. Rainer and A. Rascanu, Viability of moving sets for stochastic differential equation. Adv. Differential Equations 7 (2002) 1045–1072. [MathSciNet] [Google Scholar]
  7. I. Ciotir and A. Rascanu, Viability for stochastic differential equation driven by fractional Brownian motions. J. Differential Equations 247 (2009) 1505–1528. [CrossRef] [MathSciNet] [Google Scholar]
  8. B.B. Mandelbrot and J.W. Van Ness, Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10 (1968) 422–437. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  9. A. Milian, A note on stochastic invariance for Ito equations. Bull. Pol. Acad. Sci., Math. 41 (1993) 139–150. [Google Scholar]
  10. Y.S. Mishura, Stochastic calculus for fractional Brownian motion and related processes. Springer (2007). [Google Scholar]
  11. D. Nualart and A. Rascanu, Differential equations driven by fractional Brownian motion. Collect. Math. 53 (2002) 55–81. [MathSciNet] [Google Scholar]
  12. K. Yosida, Functional Analysis. Springer (1971). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.