Free Access
Volume 18, Number 4, October-December 2012
Page(s) 1027 - 1048
Published online 16 January 2012
  1. G. Alessandrini, Open issues of stability for the inverse conductivity problem. Journal Inverse Ill-Posed Problems 15 (2007) 451–460. [CrossRef] [MathSciNet] [Google Scholar]
  2. K. Astala and L. Päivärinta, Calderón’s inverse conductivity problem in the plane. Ann. of Math. (2) 163 (2006) 265–299. [CrossRef] [MathSciNet] [Google Scholar]
  3. K. Astala, D. Faraco, and L. Székelyhidi Jr., Convex integration and the Lp theory of elliptic equations. Ann. Scuola Norm. Super. Pisa Cl. Sci. (5) 7 (2008) 1–50. [MathSciNet] [Google Scholar]
  4. R.H. Bayford, Bioimpedance tomography (electrical impedance tomography). Ann. Rev. Biomed. Eng. 8 (2006) 63–91. [CrossRef] [Google Scholar]
  5. T. Bonesky, K.S. Kazimierski, P. Maass, F. Schöpfer and T. Schuster, Minimization of Tikhonov functionals in Banach spaces. Abstr. Appl. Anal. (2008) 19 pages. [Google Scholar]
  6. K. Bredies and D.A. Lorenz, Regularization with non-convex separable constraints. Inverse Problems 25 (2009) 085011. [CrossRef] [Google Scholar]
  7. L.M. Bregman, The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7 (1967) 200–217. [CrossRef] [Google Scholar]
  8. M. Burger and S. Osher, Convergence rates of convex variational regularization. Inverse Problems 20 (2004) 1411–1420. [CrossRef] [MathSciNet] [Google Scholar]
  9. A.-P. Calderón, On an inverse boundary value problem. In Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980). Soc. Brasil. Mat., Rio de Janeiro (1980) 65–73. [Google Scholar]
  10. M. Cheney, D. Isaacson, J.C. Newell, S. Simske and J. Goble, NOSER : An algorithm for solving the inverse conductivity problem. Int. J. Imag. Syst. Tech. 2 (1990) 66–75. [CrossRef] [Google Scholar]
  11. M. Cheney, D. Isaacson and J.C. Newell, Electrical impedance tomography. SIAM Rev. 41 (1999) 85–101. [CrossRef] [MathSciNet] [Google Scholar]
  12. K.-S. Cheng, D. Isaacson, J.C. Newell and D.G. Gisser, Electrode models for electric current computed tomography. IEEE Trans. Biomed. Eng. 36 (1989) 918–924. [Google Scholar]
  13. E.T. Chung, T.F. Chan and X.-C. Tai, Electrical impedance tomography using level set representation and total variational regularization. J. Comput. Phys. 205 (2005) 357–372. [CrossRef] [MathSciNet] [Google Scholar]
  14. I. Daubechies, M. Defrise and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Comm. Pure Appl. Math. 57 (2004) 1413–1457. [Google Scholar]
  15. T. Dierkes, O. Dorn, F. Natterer, V. Palamodov and H. Sielschott, Fréchet derivatives for some bilinear inverse problems. SIAM J. Appl. Math. 62 (2002) 2092–2113. [CrossRef] [Google Scholar]
  16. D. Dobson, Convergence of a reconstruction method for the inverse conductivity problem. SIAM J. Appl. Math. 52 (1992) 442–458. [CrossRef] [Google Scholar]
  17. D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theor. 52 (2006) 1289–1306. [Google Scholar]
  18. H. Egger and M. Schlottbom, Analysis and regularization of problems in diffuse optical tomography. SIAM J. Math. Anal. 42 (2010) 1934–1948. [CrossRef] [MathSciNet] [Google Scholar]
  19. H.W. Engl, K. Kunisch and A. Neubauer, Convergence rates for Tikhonov regularisation of nonlinear ill-posed problems. Inverse Problems 5 (1989) 523–540. [CrossRef] [MathSciNet] [Google Scholar]
  20. H.W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems. Kluwer Academic, Dordrecht (1996). [Google Scholar]
  21. L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992). [Google Scholar]
  22. T. Gallouet and A. Monier, On the regularity of solutions to elliptic equations. Rend. Mat. Appl. (7) 19 (1999) 471–488. [MathSciNet] [Google Scholar]
  23. M. Gehre, T. Kluth, A. Lipponen, B. Jin, A. Seppänen, J. Kaipio and P. Maass, Sparsity reconstruction in electrical impedance tomography : an experimental evaluation. J. Comput. Appl. Math. (2011), in press, DOI : 10.1016/ [Google Scholar]
  24. M. Grasmair, M. Haltmeier and O. Scherzer, Sparse regularization with lq penalty term. Inverse Problems 24 (2008) 055020. [CrossRef] [Google Scholar]
  25. K. Gröger, A W1,p-estimate for solutions to mixed boundary value problems for second order elliptic differential equations. Math. Ann. 283 (1989) 679–687. [CrossRef] [MathSciNet] [Google Scholar]
  26. B. Harrach and J.K. Seo, Exact shape-reconstruction by one-step linearization in electrical impedance tomography. SIAM J. Math. Anal. 42 (2010) 1505–1518. [CrossRef] [MathSciNet] [Google Scholar]
  27. B. Hofmann and M. Yamamoto, On the interplay of source conditions and variational inequalities for nonlinear ill-posed problems. Appl. Anal. 89 (2010) 1705–1727. [CrossRef] [Google Scholar]
  28. B. Hofmann, B. Kaltenbacher, C. Poeschl and O. Scherzer, A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators. Inverse Problems 23 (2007) 987–1010. [CrossRef] [MathSciNet] [Google Scholar]
  29. N. Hyvönen, Complete electrode model of electrical impedance tomography : approximation properties and characterization of inclusions. SIAM J. Appl. Math. 64 (2004) 902–931. [CrossRef] [Google Scholar]
  30. M. Ikehata and S. Siltanen, Electrical impedance tomography and Mittag-Leffler’s function. Inverse Problems 20 (2004) 1325–1348. [CrossRef] [Google Scholar]
  31. O.Y. Imanuvilov, G. Uhlmann and M. Yamamoto, The Calderón problem with partial data in two dimensions. J. Amer. Math. Soc. 23 (2010) 655–691. [CrossRef] [MathSciNet] [Google Scholar]
  32. D. Isaacson, J.L. Mueller, J.C. Newell and S. Siltanen, Reconstructions of chest phantoms by the D-bar method for electrical impedance tomography. IEEE Trans. Med. Imag. 23 (2004) 821–828. [CrossRef] [Google Scholar]
  33. K. Ito, K. Kunisch and Z. Li, Level-set function approach to an inverse interface problem. Inverse Problems 17 (2001) 1225–1242. [CrossRef] [MathSciNet] [Google Scholar]
  34. K. Ito, B. Jin and T. Takeuchi, A regularization parameter for nonsmooth Tikhonov regularization. SIAM J. Sci. Comput. 33 (2011) 1415–1438. [CrossRef] [Google Scholar]
  35. B. Jin, Y. Zhao and J. Zou, Iterative parameter choice by discrepancy principle. IMA J. Numer. Anal. (2011), in press. [Google Scholar]
  36. B. Jin, Y. Zhao and P. Maass, A reconstruction algorithm for electrical impedance tomography based on sparsity regularization. Internat. J. Numer. Methods Engrg. (2011), DOI : 10.2002/nme.3247. [Google Scholar]
  37. J.P. Kaipio, V. Kolehmainen, E. Somersalo and M. Vauhkonen, Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography. Inverse Problems 16 (2000) 1487–1522. [CrossRef] [Google Scholar]
  38. B. Kaltenbacher and B. Hofmann, Convergence rates for the iteratively regularized Gauss-Newton method in Banach spaces. Inverse Problems 26 (2010) 035007. [CrossRef] [Google Scholar]
  39. A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems. Oxford University Press, Oxford (2008). [Google Scholar]
  40. K. Knudsen, M. Lassas, J.L. Mueller and S. Siltanen, Regularized D-bar method for the inverse conductivity problem. IPI 3 (2009) 599–624. [CrossRef] [Google Scholar]
  41. V. Kolehmain, A. Voutilainen and J.P. Kaipio, Estimation of nonstionary region boundaries in EIT-state estimation approach. Inverse Problems 17 (2001) 1937–1956. [CrossRef] [Google Scholar]
  42. A. Lechleiter, A regularization technique for the factorization method. Inverse Problems 22 (2006) 1605–1625. [CrossRef] [Google Scholar]
  43. A. Lechleiter and A. Rieder, Newton regularizations for impedance tomography : a numerical study. Inverse Problems 22 (2006) 1967–1987. [CrossRef] [Google Scholar]
  44. A. Lechleiter and A. Rieder, Newton regularizations for impedance tomography : convergence by local injectivity. Inverse Problems, 24 (2008) 065009. [Google Scholar]
  45. W.R.B. Lionheart, EIT reconstruction algorithms : pitfalls, challenges and recent developments. Physiol. Meas. 25 (2004) 125–142. [CrossRef] [PubMed] [Google Scholar]
  46. D.A. Lorenz, Convergence rates and source conditions for Tikhonov regularization with sparsity constraints. Journal Inverse Ill-Posed Problems 16 (2008) 463–478. [CrossRef] [MathSciNet] [Google Scholar]
  47. M. Lukaschewitsch, P. Maass and M. Pidcock, Tikhonov regularization for electrical impedance tomography on unbounded domains. Inverse Problems 19 (2003) 585–610. [CrossRef] [Google Scholar]
  48. N.G. Meyers, An Lp-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Scuola Norm. Sup. Pisa (3) 17 (1963) 189–206. [MathSciNet] [Google Scholar]
  49. A. Neubauer, When do Sobolev spaces form a Hilbert scale? Proc. Amer. Math. Soc. 103 (1988) 557–562. [CrossRef] [MathSciNet] [Google Scholar]
  50. E. Resmerita, Regularization of ill-posed problems in Banach spaces : convergence rates. Inverse Problems 21 (2005) 1303–1314. [CrossRef] [Google Scholar]
  51. L. Rondi, On the regularization of the inverse conductivity problem with discontinuous conductivities. IPI 2 (2008) 397–409. [CrossRef] [Google Scholar]
  52. L. Rondi and F. Santosa, Enhanced electrical impedance tomography via the Mumford-Shah functional. ESAIM Control Optim. Calc. Var. 6 (2001) 517–538. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  53. E. Somersalo, M. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography. SIAM J. Appl. Math. 52 (1992) 1023–1040. [CrossRef] [Google Scholar]
  54. A.N. Tikhonov and V.Y. Arsenin, Solutions of Ill-Posed Problems. John Wiley, New York (1977). [Google Scholar]
  55. G. Uhlmann, Commentary on Calderón’s paper (29), on an inverse boundary value problem, in Selected papers of Alberto P. Calderón. Amer. Math. Soc., Providence, RI (2008) 623–636. [Google Scholar]
  56. A. Wexler, B. Fry and M.R. Neuman, Impedance-computed tomography algorithm and system. Appl. Opt. 24 (1985) 3985–3992. [CrossRef] [PubMed] [Google Scholar]
  57. T.J. Yorkey, J.G. Webster and W.J. Tompkins, Comparing reconstruction algorithms for electrical impedance tomography. IEEE Trans. Biomed. Eng. 34 (1987) 843–852. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.