Free Access
Issue
ESAIM: COCV
Volume 18, Number 4, October-December 2012
Page(s) 1049 - 1072
DOI https://doi.org/10.1051/cocv/2011190
Published online 16 January 2012
  1. L. Ambrosio and C. Mantegazza, Curvature and distance function from a manifold. J. Geom. Anal. 8 (1998) 723–748. Dedicated to the memory of Fred Almgren. [CrossRef] [MathSciNet]
  2. L. Ambrosio and V.M. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Comm. Pure Appl. Math. 43 (1990) 999–1036. [CrossRef] [MathSciNet]
  3. D. Bucur, I. Fragalà and J. Lamboley, Optimal convex shapes for concave functionals. ESAIM : COCV (in press).
  4. G. Buttazzo and P. Guasoni, Shape optimization problems over classes of convex domains. J. Convex Anal. 4 (1997) 343–351.
  5. G. Buttazzo and F. Santambrogio, Asymptotical compliance optimization for connected networks. Netw. Heterog. Media 2 (2007) 761–777 (electronic). [CrossRef] [MathSciNet]
  6. G. Buttazzo and E. Stepanov, Optimal transportation networks as free Dirichlet regions for the Monge-Kantorovich problem. Ann. Scuola Norm. Super. Pisa Cl. Sci. 2 (2003) 631–678. [MathSciNet]
  7. G. Buttazzo, E. Oudet and E. Stepanov, Optimal transportation problems with free Dirichlet regions, in Variational methods for discontinuous structures, Progr. Nonlinear Differential Equations Appl. 51. Birkhäuser, Basel (2002) 41–65.
  8. G. Buttazzo, A. Pratelli, S. Solimini and E. Stepanov, Optimal urban networks via mass transportation, Lecture Notes in Mathematics 1961. Springer-Verlag, Berlin (2009).
  9. G. Buttazzo, E. Mainini and E. Stepanov, Stationary configurations for the average distance functional and related problems. Control Cybernet. 38 (2009) 1107–1130. [MathSciNet]
  10. M.C. Delfour and J.-P. Zolésio, Shape analysis via distance functions : local theory, in Boundaries, interfaces, and transitions (Banff, AB, 1995), CRM Proc. Lect. Notes 13. Amer. Math. Soc. Providence, RI (1998) 91–123.
  11. H. Federer, Curvature measures. Trans. Amer. Math. Soc. 93 (1959) 418–491. [CrossRef] [MathSciNet]
  12. H. Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer-Verlag New York Inc., New York (1969).
  13. A. Henrot and M. Pierre, Variation et optimisation de formes, Mathématiques & Applications (Berlin) [Mathematics & Applications] 48. Springer, Berlin (2005). Une analyse géométrique [a geometric analysis].
  14. A. Lemenant, About the regularity of average distance minimizers in R2. J. Convex Anal. 18 (2011) 949–981.
  15. A. Lemenant, A presentation of the average distance minimizing problem. Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI) 390 (2010) 117–146 (Proceedings of St. Petersburg Seminar, available online at http://www.pdmi.ras.ru/znsl/2011/v390/abs117.html).
  16. C. Mantegazza and A. Mennucci, Hamilton-jacobi equations and distance functions on riemannian manifolds. Appl. Math. Optim. 47 (2003) 1–25. [CrossRef] [MathSciNet]
  17. L. Modica and S. Mortola, Il limite nella Γ-convergenza di una famiglia di funzionali ellittici. Boll. Un. Mat. Ital. A 14 (1977) 526–529. [MathSciNet]
  18. E. Paolini and E. Stepanov, Qualitative properties of maximum distance minimizers and average distance minimizers in Rn. J. Math. Sci. (N. Y.) 122 (2004) 3290–3309. Problems in mathematical analysis. [CrossRef] [MathSciNet]
  19. F. Santambrogio and P. Tilli, Blow-up of optimal sets in the irrigation problem. J. Geom. Anal. 15 (2005) 343–362. [CrossRef] [MathSciNet]
  20. L. Simon, Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis 3. Australian National University, Australian National University Centre for Mathematical Analysis, Canberra (1983).
  21. E. Stepanov, Partial geometric regularity of some optimal connected transportation networks. J. Math. Sci. (N.Y.) 132 (2006) 522–552. Problems in mathematical analysis. [CrossRef] [MathSciNet]
  22. P. Tilli, Some explicit examples of minimizers for the irrigation problem. J. Convex Anal. 17 (2010) 583–595.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.