Free Access
Issue
ESAIM: COCV
Volume 18, Number 4, October-December 2012
Page(s) 941 - 953
DOI https://doi.org/10.1051/cocv/2011199
Published online 16 January 2012
  1. S. Alexander, Some properties of the spectrum of the Sierpiński gasket in a magnetic field. Phys. Rev. B 29 (1984) 5504–5508. [CrossRef] [MathSciNet]
  2. G. Bonanno and R. Livrea, Multiplicity theorems for the Dirichlet problem involving the p-Laplacian. Nonlinear Anal. 54 (2003) 1–7. [CrossRef] [MathSciNet]
  3. G. Bonanno and G. Molica Bisci, Infinitely many solutions for a boundary value problem with discontinuous nonlinearities. Bound. Value Probl. 2009 (2009) 1–20. [CrossRef]
  4. G. Bonanno and G. Molica Bisci, Infinitely many solutions for a Dirichlet problem involving the p-Laplacian. Proc. R. Soc. Edinb. Sect. A 140 (2010) 737–752. [CrossRef]
  5. G. Bonanno, G. Molica Bisci and D. O’Regan, Infinitely many weak solutions for a class of quasilinear elliptic systems. Math. Comput. Model. 52 (2010) 152–160. [CrossRef]
  6. B.E. Breckner, D. Repovš and Cs. Varga, On the existence of three solutions for the Dirichlet problem on the Sierpiński gasket. Nonlinear Anal. 73 (2010) 2980–2990. [CrossRef] [MathSciNet]
  7. B.E. Breckner, V. Rădulescu and Cs. Varga, Infinitely many solutions for the Dirichlet problem on the Sierpiński gasket. Analysis and Applications 9 (2011) 235–248. [CrossRef] [MathSciNet]
  8. G. D’Aguì and G. Molica Bisci, Infinitely many solutions for perturbed hemivariational inequalities. Bound. Value Probl. 2011 (2011) 1–19.
  9. G. D’Aguì and G. Molica Bisci, Existence results for an Elliptic Dirichlet problem, Le Matematiche LXVI, Fasc. I (2011) 133–141.
  10. K.J. Falconer, Semilinear PDEs on self-similar fractals. Commun. Math. Phys. 206 (1999) 235–245. [CrossRef]
  11. K.J. Falconer, Fractal Geometry : Mathematical Foundations and Applications, 2nd edition. John Wiley & Sons (2003).
  12. K.J. Falconer and J. Hu, Nonlinear elliptical equations on the Sierpiński gasket. J. Math. Anal. Appl. 240 (1999) 552–573. [CrossRef]
  13. M. Fukushima and T. Shima, On a spectral analysis for the Sierpiński gasket. Potential Anal. 1 (1992) 1–35. [CrossRef] [MathSciNet]
  14. S. Goldstein, Random walks and diffusions on fractals, in Percolation Theory and Ergodic Theory of Infinite Particle Systems, IMA Math. Appl. 8, edited by H. Kesten. Springer, New York (1987) 121–129.
  15. J. Hu, Multiple solutions for a class of nonlinear elliptic equations on the Sierpiński gasket. Sci. China Ser. A 47 (2004) 772–786. [CrossRef] [MathSciNet]
  16. C. Hua and H. Zhenya, Semilinear elliptic equations on fractal sets. Acta Mathematica Scientica 29 B (2009) 232–242. [CrossRef] [MathSciNet]
  17. A. Kristály and G. Moroşanu, New competition phenomena in Dirichlet problems. J. Math. Pures Appl. 94 (2010) 555–570. [CrossRef]
  18. A. Kristály, V. Rădulescu and C. Varga, Variational Principles in Mathematical Physics, Geometry, and Economics : Qualitative Analysis of Nonlinear Equations and Unilateral Problems. Cambridge University Press, Cambridge (2010).
  19. J. Kigami, Analysis on Fractals. Cambridge University Press, Cambridge (2001).
  20. S. Kusuoka, A diffusion process on a fractal. Probabilistic Methods in Mathematical Physics, Katata/Kyoto (1985) 251–274; Academic Press, Boston, MA (1987).
  21. B.B. Mandelbrot, How long is the coast of Britain? Statistical self-similarity and fractional dimension, Science 156 (1967) 636–638. [CrossRef] [PubMed]
  22. B.B. Mandelbrot, Fractals : Form, Chance and Dimension. W.H. Freeman & Co., San Francisco (1977).
  23. B.B. Mandelbrot, The Fractal Geometry of Nature. W.H. Freeman & Co., San Francisco (1982).
  24. P. Omari and F. Zanolin, Infinitely many solutions of a quasilinear elliptic problem with an oscillatory potential. Comm. Partial Differential Equations 21 (1996) 721–733. [CrossRef] [MathSciNet]
  25. P. Omari and F. Zanolin, An elliptic problem with arbitrarily small positive solutions, Proceedings of the Conference on Nonlinear Differential Equations (Coral Gables, FL, 1999). Electron. J. Differ. Equ. Conf. 5. Southwest Texas State Univ., San Marcos, TX (2000) 301–308.
  26. R. Rammal, A spectrum of harmonic excitations on fractals. J. Phys. Lett. 45 (1984) 191–206. [CrossRef] [EDP Sciences]
  27. R. Rammal and G. Toulouse, Random walks on fractal structures and percolation clusters. J. Phys. Lett. 44 (1983) L13–L22. [CrossRef] [EDP Sciences]
  28. B. Ricceri, A general variational principle and some of its applications. J. Comput. Appl. Math. 113 (2000) 401–410. [CrossRef]
  29. W. Sierpiński, Sur une courbe dont tout point est un point de ramification. Comptes Rendus (Paris) 160 (1915) 302–305.
  30. R.S. Strichartz, Analysis on fractals. Notices Amer. Math. Soc. 46 (1999) 1199–1208. [MathSciNet]
  31. R.S. Strichartz, Solvability for differential equations on fractals. J. Anal. Math. 96 (2005) 247–267. [CrossRef] [MathSciNet]
  32. R.S. Strichartz, Differential Equations on Fractals, A Tutorial. Princeton University Press, Princeton, NJ (2006).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.