Free Access
Volume 19, Number 1, January-March 2013
Page(s) 288 - 300
Published online 12 June 2012
  1. A.V. Fursikov and O.Yu. Imanuvilov, Controllability of Evolution Equations, Seoul National University, Korea Lect. Notes. 34 (1996). [Google Scholar]
  2. O.Yu. Imanuvilov, Controllability of parabolic equations (Russian) Mat. Sb. 186 (1995) 109–132; translation in Sb. Math. 186 (1995) 879–900. [Google Scholar]
  3. S. Ivanov and L. Pandolfi, Heat equation with memory : Lack of controllability to rest. J. Math. Anal. Appl. 355 (2009) 1–11. [CrossRef] [Google Scholar]
  4. G. Lebeau and L. Robbiano, Contrôle exact de l’équation de la chaleur (French). [Exact control of the heat equation]. Commun. Partial Differ. Equ. 20 (1995) 335–356. [Google Scholar]
  5. J.-L. Lions, Exact controllability, stabilizability and perturbations for distributed systems. SIAM Rev. 30 (1988) 1–68. [CrossRef] [MathSciNet] [Google Scholar]
  6. J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications I, Translated from the French by P. Kenneth, edited by Springer-Verlag, New York, Heidelberg. Die Grundlehren der Mathematischen Wissenschaften. 181 (1972). [Google Scholar]
  7. D.L. Russell, Controllability and stabilizability theory for linear partial differential equations. Recent progress and open questions. SIAM Rev. 20 (1978) 639–739. [CrossRef] [MathSciNet] [Google Scholar]
  8. R. Temam, Navier-Stokes equations, Theory and numerical analysis, edited by North Holland Publishing Co., Amsterdam, New York, Oxford Studies in Math. Appl. 2 (1977). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.