Free Access
Issue
ESAIM: COCV
Volume 19, Number 2, April-June 2013
Page(s) 555 - 573
DOI https://doi.org/10.1051/cocv/2012021
Published online 14 March 2013
  1. E. Acerbi and G. Dal Maso, New lower semicontinuity results for polyconvex integrals. Calc. Var. Partial Differ. Equ. 2 (1994) 329–371. [CrossRef] [Google Scholar]
  2. L. Ambrosio and G. Dal Maso, On the relaxation in BV(Ω;Rm) of quasi-convex integrals. J. Funct. Anal. 109 (1992) 76–97. [CrossRef] [MathSciNet] [Google Scholar]
  3. L. Ambrosio, N. Fusco, and D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York (2000). [Google Scholar]
  4. J.M. Ball and F. Murat, W1, p-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58 (1984) 225–253. [CrossRef] [MathSciNet] [Google Scholar]
  5. G. Bouchitté, I. Fonseca and J. Malý, The effective bulk energy of the relaxed energy of multiple integrals below the growth exponent. Proc. of R. Soc. Edinburgh Sect. A 128 (1998) 463–479. [CrossRef] [MathSciNet] [Google Scholar]
  6. L. Carbone and R. De Arcangelis, Further results on Γ-convergence and lower semicontinuity of integral functionals depending on vector-valued functions. Ric. Mat. 39 (1990) 99–129. [Google Scholar]
  7. M. Carozza, J. Kristensen and A. Passarelli di Napoli, Lower semicontinuity in a borderline case. Preprint (2008). [Google Scholar]
  8. R. Černý, Relaxation of an area-like functional for the function Formula . Calc. Var. Partial Differ. Equ. 28 (2007) 203–216. [Google Scholar]
  9. B. Dacorogna, Direct methods in the calculus of variations. Appl. Math. Sci. 78 (1989). [Google Scholar]
  10. B. Dacorogna, I. Fonseca, J. Malý and K. Trivisa, Manifold constrained variational problems. Calc. Var. Partial Differ. Equ. 9 (1999) 185–206. [CrossRef] [MathSciNet] [Google Scholar]
  11. I. Fonseca and J. Malý, Relaxation of multiple integrals below the growth exponent. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 14 (1997) 309–338. [CrossRef] [MathSciNet] [Google Scholar]
  12. I. Fonseca and J. Malý, From Jacobian to Hessian: distributional form and relaxation. Riv. Mat. Univ. Parma 4 (2005) 45–74. [MathSciNet] [Google Scholar]
  13. I. Fonseca and P. Marcellini, Relaxation of multiple integrals in subcritical Sobolev spaces. J. Geom. Anal. 7 (1997) 57–81. [CrossRef] [MathSciNet] [Google Scholar]
  14. I. Fonseca and S. Müller, Quasi-convex integrands and lower semicontinuity in L1. SIAM J. Math. Anal. 23 (1992) 1081–1098. [CrossRef] [MathSciNet] [Google Scholar]
  15. I. Fonseca and S. Müller, Relaxation of quasiconvex functionals in BV(Ω, Rp) for integrands f(x, u, u). Arch. Ration. Mech. Anal. 123 (1993) 1–49. [CrossRef] [MathSciNet] [Google Scholar]
  16. I. Fonseca, G. Leoni and S. Müller, 𝒜 quasiconvexity: weak-star convergence and the gap. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 21 (2004) 209–236. [Google Scholar]
  17. L. Greco, T. Iwaniec and G. Moscariello, Limits of the improved integrability of the volume forms. Indiana Univ. Math. J. 44 (1995) 305–339. [CrossRef] [MathSciNet] [Google Scholar]
  18. T. Iwaniec and G. Martin, Geometric function theory and non-linear analysis. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York (2001). [Google Scholar]
  19. J. Kristensen, Lower semicontinuity of quasi-convex integrals in BV(Ω;Rm). Calc. Var. Partial Differ. Equ. 7 (1998) 249–261. [CrossRef] [Google Scholar]
  20. J. Malý, Weak lower semicontinuity of polyconvex integrals. Proc. of R. Soc. Edinburgh Sect. A 123 (1993) 681–691. [CrossRef] [Google Scholar]
  21. J. Malý, Weak lower semicontinuity of polyconvex and quasiconvex integrals. Preprint (1993). [Google Scholar]
  22. J. Malý, Lower semicontinuity of quasiconvex integrals. Manusc. Math. 85 (1994) 419–428. [CrossRef] [MathSciNet] [Google Scholar]
  23. P. Marcellini, On the definition and the lower semicontinuity of certain quasiconvex integrals. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 3 (1986) 391–409. [Google Scholar]
  24. N.G. Meyers, Quasi-convexity and lower semi-continuity of multiple variational integrals of any order. Trans. Amer. Math. Soc. 119 (1965) 125–149. [CrossRef] [MathSciNet] [Google Scholar]
  25. S. Müller, On quasiconvex functions which are homogeneous of degree 1. Indiana Univ. Math. J. 41 (1992) 295–301. [CrossRef] [MathSciNet] [Google Scholar]
  26. F. Rindler, Lower semicontinuity and Young measures in BV without Alberti’s rank-one theorem. Adv. Calc. Var. 5 (2012) 127–159. [CrossRef] [MathSciNet] [Google Scholar]
  27. W. Rudin, Real and complex analysis, 3rd edition, McGraw-Hill Book Co., New York (1987). [Google Scholar]
  28. J. Serrin, A new definition of the integral for nonparametric problems in the calculus of variations. Acta Math. 102 (1959) 23–32. [CrossRef] [MathSciNet] [Google Scholar]
  29. J. Serrin, On the definition and properties of certain variational integrals. Trans. Amer. Math. Soc. 101 (1961) 139–167. [CrossRef] [MathSciNet] [Google Scholar]
  30. V. Šverák, Quasiconvex functions with subquadratic growth. Proc. of R. Soc. London A 433 (1991) 723–725. [CrossRef] [Google Scholar]
  31. K. Zhang, A construction of quasiconvex functions with linear growth at infinity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 19 (1992) 313–326. [MathSciNet] [Google Scholar]
  32. W.P. Ziemer, Weakly differentiable functions, Sobolev spaces and functions of bounded variation. Graduate Texts in Mathematics 120 (1989). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.