Free Access
Issue
ESAIM: COCV
Volume 19, Number 2, April-June 2013
Page(s) 574 - 586
DOI https://doi.org/10.1051/cocv/2012022
Published online 15 February 2013
  1. Y. An, Uniqueness of positive solutions for a class of elliptic systems. J. Math. Anal. Appl. 322 (2006) 1071–1082. [CrossRef] [Google Scholar]
  2. V. Benci, Some critical point theorems and applications. Commun. Pure Appl. Math. 33 (1980) 147–172. [CrossRef] [Google Scholar]
  3. J. Busca and B. Sirakov, Symmetry results for semilinear elliptic systems in the whole space. J. Differ. Equ. 163 (2000) 41–56. [CrossRef] [Google Scholar]
  4. K.-J. Chen, Multiplicity for strongly indefinite semilinear elliptic system. Nonlinear Anal. 72 (2010) 806–821. [CrossRef] [MathSciNet] [Google Scholar]
  5. P. Clement, D.G. Figuereido and E. Mitidieri, Positive solutions of semilinear elliptic systems. Commun. Partial Differ. Equ. 17 (1992) 923–940. [CrossRef] [Google Scholar]
  6. D.G. Costa, On a class of elliptic systems in RN. Electron. J. Differ. Equ. 7 (1994) 1–14. [Google Scholar]
  7. R. Cui, Y. Wang and J. Shi, Uniqueness of the positive solution for a class of semilinear elliptic systems. Nonlinear Anal. 67 (2007) 1710–1714. [CrossRef] [MathSciNet] [Google Scholar]
  8. R. Dalmasso, Existence and uniqueness of positive solutions of semilinear elliptic systems. Nonlinear Anal. 39 (2000) 559–568. [CrossRef] [MathSciNet] [Google Scholar]
  9. D.G. De Finueirdo and J.F. Yang, Decay, symmetry and existence of solutions of semilinear elliptic systems. Nonlinear Anal. 33 (1998) 211–234. [CrossRef] [MathSciNet] [Google Scholar]
  10. I. Ekeland, On the variational principle. J. Math. Anal. Appl. 47 (1974) 324–353. [CrossRef] [MathSciNet] [Google Scholar]
  11. L. Gongbao and W. Chunhua, The existence of nontrivial solutions to a semilinear elliptic system on RN without the Ambrosetti-Rabinowitz condition. Acta Math. Sci. B 30 (2010) 1917–1936. [CrossRef] [Google Scholar]
  12. D.D. Hai, Uniqueness of positive solutions for semilinear elliptic systems. J. Math. Anal. Appl. 313 (2006) 761–767. [CrossRef] [Google Scholar]
  13. A.V. Lair and A.W. Wood, Existence of entire large positive solutions of semilinear elliptic systems, J. Differ. Equ. 164 (2000) 380–394. [CrossRef] [Google Scholar]
  14. G.B. Li and J.F. Yang, Asymptotically linear elliptic systems. Commun. Partial Differ. Equ. 29 (2004) 925–954. [CrossRef] [Google Scholar]
  15. P.L. Lions, the concentration-compactness principle in the calculus of variations. The locally compact case, part 1. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 1 (1984) 109–145. [Google Scholar]
  16. P.L. Lions, the concentration-compactness principle in the calculus of variations. The locally compact case, part 2. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 2 (1984) 223–283. [Google Scholar]
  17. Z. Nehari, On a class of nonlinear second-order differential equations. Trans. Amer. Math. Soc. 95 (1960) 101–123. [CrossRef] [MathSciNet] [Google Scholar]
  18. W.-M. Ni, Some minimax principles and their applications in nonlinear elliptic equations. J. Anal. Math. 37 (1980) 248–275. [CrossRef] [Google Scholar]
  19. P.H. Rabinowitz, Some critical point theorems and applications to semilinear elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 5 (1978) 215–223. [MathSciNet] [Google Scholar]
  20. J. Serrin and H. Zou, Nonexistence of positive solutions of Lane-Emden systems. Differ. Integral Equ. 9 (1996) 635–653. [Google Scholar]
  21. T.-F. Wu, The Nehari manifold for a semilinear elliptic system involving sign-changing weight functions. Nonlinear Anal. 68 (2008) 1733–1745. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.