Free Access
Volume 19, Number 2, April-June 2013
Page(s) 616 - 627
Published online 14 March 2013
  1. S. Bernstein, Über ein geometrisches theorem und seine anwendung auf die partiellen differentialgleichungen vom elliptischen Typus. Math. Z. 26 (1927) 551–558. [CrossRef] [MathSciNet] [Google Scholar]
  2. L. Caffarelli, N. Garofalo and F. Segala, A gradient bound for entire solutions of quasi-linear equations and its consequences. Commun. Pure Appl. Math. 47 (1994) 1457–1473. [CrossRef] [Google Scholar]
  3. D. Castellaneta, A. Farina and E. Valdinoci, A pointwise gradient estimate for solutions of singular and degenerate PDEs in possibly unbounded domains with nonnegative mean curvature. Commun. Pure Appl. Anal. 11 (2012) 1983–2003. [CrossRef] [MathSciNet] [Google Scholar]
  4. D.G. De Figueiredo and P. Ubilla, Superlinear systems of second-order ODE’s. Nonlinear Anal. 68 (2008) 1765–1773. [CrossRef] [MathSciNet] [Google Scholar]
  5. D.G. De Figueiredo, J. Sánchez and P. Ubilla, Quasilinear equations with dependence on the gradient. Nonlinear Anal. 71 (2009) 4862–4868. [CrossRef] [MathSciNet] [Google Scholar]
  6. E. DiBenedetto, C1 + α local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7 (1983) 827–850. [CrossRef] [MathSciNet] [Google Scholar]
  7. A. Farina, Liouville-type theorems for elliptic problems, in Handbook of differential equations: stationary partial differential equations, Elsevier/North-Holland, Amsterdam. Handb. Differ. Equ. 4 (2007) 61–116. [Google Scholar]
  8. A. Farina and E. Valdinoci, Flattening results for elliptic PDEs in unbounded domains with applications to overdetermined problems. Arch. Ration. Mech. Anal. 195 (2010) 1025–1058. [CrossRef] [MathSciNet] [Google Scholar]
  9. A. Farina and E. Valdinoci, A pointwise gradient estimate in possibly unbounded domains with nonnegative mean curvature. Adv. Math. 225 (2010) 2808–2827. [CrossRef] [MathSciNet] [Google Scholar]
  10. A. Farina and E. Valdinoci, A pointwise gradient bound for elliptic equations on compact manifolds with nonnegative Ricci curvature. Discrete Contin. Dyn. Syst. 30 (2011) 1139–1144. [CrossRef] [MathSciNet] [Google Scholar]
  11. D. Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order. Classics in Mathematics. Springer-Verlag, Berlin (2001). Reprint of the 1998 edition. [Google Scholar]
  12. P. Hartman, Ordinary differential equations, Society for Industrial and Applied Mathematics SIAM, Philadelphia, PA. Classics Appl. Math. 38 (2002). Corrected reprint of the second (1982) edition [Birkhäuser, Boston, MA, MR0658490 (83e:34002)]. With a foreword by Peter Bates. [Google Scholar]
  13. L. Modica, A gradient bound and a Liouville theorem for nonlinear Poisson equations. Commun. Pure Appl. Math. 38 (1985) 679–684. [CrossRef] [Google Scholar]
  14. L.E. Payne, Some remarks on maximum principles. J. Anal. Math. 30 (1976) 421–433. [CrossRef] [Google Scholar]
  15. J. Serrin, Entire solutions of nonlinear Poisson equations. Proc. London Math. Soc. 24 (1972) 348–366. [CrossRef] [MathSciNet] [Google Scholar]
  16. R.P. Sperb, Maximum principles and their applications, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York. Math. Sci. Eng. 157 (1981). [Google Scholar]
  17. P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations. J. Differ. Equ. 51 (1984) 126–150. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.