Free Access
Issue
ESAIM: COCV
Volume 19, Number 3, July-September 2013
Page(s) 629 - 656
DOI https://doi.org/10.1051/cocv/2012025
Published online 28 March 2013
  1. A. Alexandrov and J. Devreese, Advances in Polaron Physics. Springer Series in Solid-State Sciences, Springer (2009). [Google Scholar]
  2. É. Cancès, A. Deleurence and M. Lewin, A new approach to the modelling of local defects in crystals: the reduced Hartree-Fock case. Commun. Math. Phys. 281 (2008) 129–177. [CrossRef] [Google Scholar]
  3. É. Cancès, A. Deleurence and M. Lewin, Non-perturbative embedding of local defects in crystalline materials. J. Phys. Condens. Matter 20 (2008) 294213. [CrossRef] [Google Scholar]
  4. É. Cancès and M. Lewin, The dielectric permittivity of crystals in the reduced Hartree-Fock approximation. Arch. Ration. Mech. Anal. 197 (2010) 139–177. [CrossRef] [MathSciNet] [Google Scholar]
  5. I. Catto, C. Le Bris and P.-L. Lions, On the thermodynamic limit for Hartree-Fock type models. Ann. Inst. Henri Poincaré Anal. Non Linéaire 18 (2001) 687–760. [Google Scholar]
  6. R.L. Frank, E.H. Lieb, R. Seiringer and L.E. Thomas, Bi-polaron and N-polaron binding energies. Phys. Rev. Lett. 104 (2010) 210402. [CrossRef] [PubMed] [Google Scholar]
  7. R.L. Frank, E.H. Lieb, R. Seiringer and L.E. Thomas, Stability and absence of binding for multi-polaron systems. Publ. Math. Inst. Hautes Études Sci. 113 (2011) 39–67. [CrossRef] [Google Scholar]
  8. H. Fröhlich, Theory of Electrical Breakdown in Ionic Crystals. Proc. of R. Soc. London A 160 (1937) 230–241. [CrossRef] [Google Scholar]
  9. H. Fröhlich, Interaction of electrons with lattice vibrations. Proc. of R. Soc. London A 215 (1952) 291–298. [Google Scholar]
  10. M. Griesemer and J.S. Møller, Bounds on the minimal energy of translation invariant n-polaron systems. Commun. Math. Phys. 297 (2010) 283–297. [CrossRef] [Google Scholar]
  11. C. Hainzl, M. Lewin and É. Séré, Existence of atoms and molecules in the mean-field approximation of no-photon quantum electrodynamics. Arch. Ration. Mech. Anal. 192 (2009) 453–499. [CrossRef] [MathSciNet] [Google Scholar]
  12. W. Hunziker, On the spectra of Schrödinger multiparticle Hamiltonians. Helv. Phys. Acta 39 (1966) 451–462. [MathSciNet] [Google Scholar]
  13. M. Lewin, Geometric methods for nonlinear many-body quantum systems. J. Funct. Anal. 260 (2011) 3535–3595. [CrossRef] [MathSciNet] [Google Scholar]
  14. M. Lewin and N. Rougerie, Derivation of Pekar’s Polarons from a Microscopic Model of Quantum Crystals (2011). [Google Scholar]
  15. E.H. Lieb, Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57 (1977) 93–105. [Google Scholar]
  16. E.H. Lieb and M. Loss, Analysis, in Graduate Studies in Mathematics, 2nd edition, Vol. 14. AMS, Providence, RI. (2001). [Google Scholar]
  17. E.H. Lieb and L.E. Thomas, Exact ground state energy of the strong-coupling polaron. Commun. Math. Phys. 183 (1997) 511–519. [CrossRef] [Google Scholar]
  18. P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Part I. Ann. Inst. Henri Poincaré Anal. Non Linéaire 1 (1984) 109–149. [Google Scholar]
  19. P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Part II. Ann. Inst. Henri Poincaré Anal. Non Linéaire 1 (1984) 223–283. [Google Scholar]
  20. T. Miyao and H. Spohn, The bipolaron in the strong coupling limit. Ann. Henri Poincaré 8 (2007) 1333–1370. [CrossRef] [MathSciNet] [Google Scholar]
  21. S. Pekar, Untersuchungen fiber die Elektronen Theorie der Kristalle. Berlin, Akademie-Verlag (1954). [Google Scholar]
  22. S. Pekar, Research in electron theory of crystals. Tech. Report AEC-tr-5575. United States Atomic Energy Commission, Washington, DC (1963). [Google Scholar]
  23. S. Pekar and O. Tomasevich, Theory of F centers. Zh. Eksp. Teor. Fys. 21 (1951) 1218–1222. [Google Scholar]
  24. M. Reed and B. Simon, Methods of Modern Mathematical Physics. I. Functional analysis. Academic Press (1972). [Google Scholar]
  25. B. Simon, Trace ideals and their applications, in Lect. Note Ser., Vol. 35. London Mathematical Society. Cambridge University Press, Cambridge (1979). [Google Scholar]
  26. C. Van Winter, Theory of finite systems of particles. I. The Green function. Mat.-Fys. Skr. Danske Vid. Selsk. 2 (1964). [Google Scholar]
  27. G.M. Zhislin, Discussion of the spectrum of Schrödinger operators for systems of many particles. In Russian. Trudy Moskovskogo matematiceskogo obscestva 9 (1960) 81–120. [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.