Free Access
Volume 19, Number 3, July-September 2013
Page(s) 657 - 667
Published online 28 March 2013
  1. F. Alouges and S. Labbé, Convergence of a ferromagnetic film model. C. R. Math. Acad. Sci. Paris 344 (2007) 77–82. [CrossRef] [MathSciNet] [Google Scholar]
  2. H. Ammari, L. Halpern and K. Hamdache, Asymptotic behavior of thin ferromagnetic films. Asymptot. Anal. 24 (2000) 277–294. [MathSciNet] [Google Scholar]
  3. G. Carbou, Thin Layers in Micromagnetism. Math. Model. Methods Appl. Sci. 11 (2001) 1529–1546. [CrossRef] [Google Scholar]
  4. P. Chandra and P.B. Littlewood, A Landau primer for ferroelectrics, The Physics of ferroelectrics: A modern perspective, edited by K. Rabe, C.H. Ahn and J.-M. Triscone. Topics Appl. Phys. 105 (2007) 69–116. [Google Scholar]
  5. P.G. Ciarlet and P. Destuynder, A Justification of the two-dimensional linear plate model. J. Méca. 18 (1979) 315–344. [Google Scholar]
  6. M. Costabel, M. Dauge and S. Nicaise, Singularities of Maxwell interface problems. ESAIM: M2AN 33 (1999) 627–649. [CrossRef] [EDP Sciences] [Google Scholar]
  7. E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975) 842–850. [MathSciNet] [Google Scholar]
  8. A. Desimone, R.V. Kohn, S. Muller and F. Otto, A reduced theory for thin-film micromagnetics. Commun. Pure Appl. Math. 55 (2002) 1408–1460. [CrossRef] [Google Scholar]
  9. A. Gaudiello and R. Hadiji, Junction of ferromagnetic thin films. Calc. Var. Partial Differ. Equ. 39 (2010) 593–619. [CrossRef] [Google Scholar]
  10. G. Gioia and R.D. James, Micromagnetism of very thin films. Proc. of R. London A 453 (1997) 213–223. [CrossRef] [Google Scholar]
  11. R.V. Kohn and V.V. Slastikov, Another thin-film limit of micromagnetics. Arch. Ration. Mech. Anal. 178 (2005) 227–245. [CrossRef] [MathSciNet] [Google Scholar]
  12. R.C. Smith, Smart material systems. model development, in Front. Appl. Math. Vol. 32. SIAM (2005). [Google Scholar]
  13. Y. Su and C.M. Landis, Continuum thermodynamics of ferroelectric domain evolution: theory, finite element implementation, and application to domain wall pinning. J. Mech. Phys. Solids 55 (2007) 280–305. [CrossRef] [Google Scholar]
  14. W. Zhang and K. Bhattacharya, A computational model of ferroelectric domains. Part I. Model formulation and domain switching. Acta Mater. 53 (2005) 185–198. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.