Free Access
Volume 19, Number 3, July-September 2013
Page(s) 710 - 739
Published online 03 June 2013
  1. J.-P. Aubin and H. Frankowska, Set-valued analysis. Systems AND Control: Foundations and Applications, vol. 2. Birkhuser Boston, Inc. Boston, MA (1990). [Google Scholar]
  2. Y. Achdou, F. Camilli, A. Cutri and N. Tchou, Hamilton-Jacobi equations constrained on networks, NDEA Nonlinear Differential Equation and Application, to appear (2012). [Google Scholar]
  3. A.S. Mishra and G.D. Veerappa Gowda, Explicit Hopf-Lax type formulas for Hamilton-Jacobi equations and conservation laws with discontinuous coefficients. J. Diff. Eq. 241 (2007) 1–31. [Google Scholar]
  4. M. Bardi and I. Capuzzo Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Systems and Control: Foundations & Applications. Birkhauser Boston Inc., Boston, MA (1997). [Google Scholar]
  5. G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi, Springer-Verlag, Paris (1994). [Google Scholar]
  6. G. Barles and E.R. Jakobsen, On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations. ESAIM: M2AN 36 (2002) 33–54. [Google Scholar]
  7. G. Barles and B. Perthame, Exit time problems in optimal control and vanishing viscosity method. SIAM J. Control Optim. 26 (1988) 1133–1148. [CrossRef] [MathSciNet] [Google Scholar]
  8. G. Barles and B. Perthame, Comparison principle for Dirichlet type Hamilton-Jacobi Equations and singular perturbations of degenerated elliptic equations. Appl. Math. Optim. 21 (1990) 21–44. [CrossRef] [MathSciNet] [Google Scholar]
  9. A.-P. Blanc, Deterministic exit time control problems with discontinuous exit costs. SIAM J. Control Optim. 35 (1997) 399–434. [CrossRef] [MathSciNet] [Google Scholar]
  10. A-P. Blanc, Comparison principle for the Cauchy problem for Hamilton-Jacobi equations with discontinuous data. Nonlinear Anal. Ser. A Theory Methods 45 (2001) 1015–1037. [CrossRef] [MathSciNet] [Google Scholar]
  11. A. Bressan and Y. Hong, Optimal control problems on stratified domains. Netw. Heterog. Media 2 (2007) 313–331 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  12. F Camilli and A. Siconolfi, Time-dependent measurable Hamilton-Jacobi equations. Comm. Partial Differ. Equ. 30 (2005) 813–847. [CrossRef] [Google Scholar]
  13. G. Coclite and N. Risebro, Viscosity solutions of Hamilton-Jacobi equations with discontinuous coefficients. J. Hyperbolic Differ. Equ. 4 (2007) 771–795. [CrossRef] [MathSciNet] [Google Scholar]
  14. C. De Zan and P. Soravia, Cauchy problems for noncoercive Hamilton-Jacobi-Isaacs equations with discontinuous coefficients. Interfaces Free Bound 12 (2010) 347–368. [Google Scholar]
  15. K. Deckelnick and C. Elliott, Uniqueness and error analysis for Hamilton-Jacobi equations with discontinuities. Interfaces Free Bound 6 (2004) 329–349. [CrossRef] [MathSciNet] [Google Scholar]
  16. P. Dupuis, A numerical method for a calculus of variations problem with discontinuous integrand. Applied stochastic analysis, New Brunswick, NJ 1991. Lect. Notes Control Inform. Sci., vol. 177. Springer, Berlin (1992) 90–107. [CrossRef] [Google Scholar]
  17. A.F. Filippov, Differential equations with discontinuous right-hand side. Matematicheskii Sbornik 51 (1960) 99–128. Amer. Math. Soc. Transl. 42 (1964) 199–231 (English translation Series 2). [Google Scholar]
  18. M. Garavello and P. Soravia, Optimality principles and uniqueness for Bellman equations of unbounded control problems with discontinuous running cost. NoDEA Nonlinear Differ. Equ. Appl. 11 (2004) 271–298. [CrossRef] [MathSciNet] [Google Scholar]
  19. M. Garavello and P. Soravia, Representation formulas for solutions of the HJI equations with discontinuous coefficients and existence of value in differential games. J. Optim. Theory Appl. 130 (2006) 209–229. [CrossRef] [MathSciNet] [Google Scholar]
  20. Y. Giga, P. Gòrka and P. Rybka, A comparison principle for Hamilton-Jacobi equations with discontinuous Hamiltonians. Proc. Amer. Math. Soc. 139 (2011) 1777–1785. [CrossRef] [MathSciNet] [Google Scholar]
  21. D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second-Order. Springer, New-York (1983). [Google Scholar]
  22. Lions P.L. Generalized Solutions of Hamilton-Jacobi Equations, Res. Notes Math., vol. 69. Pitman, Boston (1982). [Google Scholar]
  23. R.T. Rockafellar, Convex analysis, Princeton Mathematical Series, 28, Princeton University Press, Princeton, N.J. (1970). [Google Scholar]
  24. C. Imbert, R. Monneau and H. Zidani, A Hamilton-Jacobi approach to junction problems and applications to traffic flows, ESAIM: COCV 19 (2013) 1–316. [Google Scholar]
  25. H.M. Soner, Optimal control with state-space constraint I. SIAM J. Control Optim. 24 (1986) 552–561. [Google Scholar]
  26. D. Schieborn and F. Camilli, Viscosity solutions of Eikonal equations on topological networks, to appear in Calc. Var. Partial Differential Equations. [Google Scholar]
  27. P. Soravia, Degenerate eikonal equations with discontinuous refraction index. ESAIM: COCV 12 (2006). [Google Scholar]
  28. T. Wasewski, Systèmes de commande et équation au contingent. Bull. Acad. Pol. Sci. 9 (1961) 151–155. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.