Free Access
Issue
ESAIM: COCV
Volume 19, Number 3, July-September 2013
Page(s) 780 - 810
DOI https://doi.org/10.1051/cocv/2012033
Published online 03 June 2013
  1. A.D. Aleksandrov, Uniqueness conditions and estimates for the solution of the Dirichlet problem. Amer. Math. Soc. Trans. 68 (1968) 89–119. [Google Scholar]
  2. J.D. Benamou, B.D. Froese and A.M. Oberman, Two numerical methods for the elliptic Monge − Ampère equation. ESAIM: M2AN 44 (2010) 737–758. [CrossRef] [EDP Sciences] [Google Scholar]
  3. M. Bernadou, P.L. George, A. Hassim, P. Joly, P. Laug, A. Perronet, E. Saltel, D. Steer, G. Vanderborck and M. Vidrascu, Modulef, a modular library of finite elements. Technical report, INRIA (1988). [Google Scholar]
  4. P.B. Bochev and M.D. Gunzburger, Least-Squares Finite Element Methods. Springer-Verlag, New York (2009). [Google Scholar]
  5. K. Boehmer, On finite element methods for fully nonlinear elliptic equations of second order. SIAM J. Numer. Anal. 46 (2008) 1212–1249. [Google Scholar]
  6. S.C. Brenner, T. Gudi, M. Neilan and L.-Y. Sung, c0 penalty methods for the fully nonlinear Monge − Ampere equation. Math. Comput. 80 (2011) 1979–1995. [Google Scholar]
  7. S.C. Brenner and M. Neilan, Finite element approximations of the three dimensional Monge − Ampère equation. ESAIM: M2AN 46 (2012) 979–1001. [CrossRef] [EDP Sciences] [Google Scholar]
  8. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, NewYork (1991). [Google Scholar]
  9. A. Caboussat and R. Glowinski, Regularization methods for the numerical solution of the divergence equation ∇·u = f. J. Comput. Math. 30 (2012) 354–380. [CrossRef] [Google Scholar]
  10. X. Cabré, Topics in regularity and qualitative properties of solutions of nonlinear elliptic equations. Discrete Contin. Dyn. Systems 8 (2002) 289–302. [CrossRef] [Google Scholar]
  11. L.A. Caffarelli, Nonlinear elliptic theory and the Monge − Ampère equation, in Proc. of the International Congress of Mathematicians. Higher Education Press, Beijing (2002) 179–187. [Google Scholar]
  12. L.A. Caffarelli and X. Cabré, Fully Nonlinear Elliptic Equations. American Mathematical Society, Providence, RI (1995). [Google Scholar]
  13. L.A. Caffarelli and R. Glowinski, Numerical solution of the Dirichlet problem for a Pucci equation in dimension two. Application to homogenization. J. Numer. Math. 16 (2008) 185–216. [CrossRef] [MathSciNet] [Google Scholar]
  14. L.A. Caffarelli, S.A. Kochenkgin and V.I. Olicker, On the numerical solution of reflector design with given far field scattering data, in MongeAmpère Equation: Application to Geometry and Optimization, American Mathematical Society, Providence, RI (1999) 13–32. [Google Scholar]
  15. M.G. Crandall, H. Ishii and P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27 (1992) 1–67. [CrossRef] [MathSciNet] [Google Scholar]
  16. E.J. Dean and R. Glowinski, Numerical solution of the two-dimensional elliptic Monge − Ampère equation with Dirichlet boundary conditions: an augmented Lagrangian approach. C. R. Acad. Sci. Paris, Ser. I 336 (2003) 779–784. [CrossRef] [Google Scholar]
  17. E.J. Dean and R. Glowinski, Numerical solution of the two-dimensional elliptic Monge − Ampère equation with Dirichlet boundary conditions: a least-squares approach. C. R. Acad. Sci. Paris, Ser. I 339 (2004) 887–892. [CrossRef] [Google Scholar]
  18. E.J. Dean and R. Glowinski, Numerical solution of a two-dimensional elliptic Pucci’s equation with Dirichlet boundary conditions: a least-squares approach. C. R. Acad. Sci. Paris, Ser. I 341 (2005) 374–380. [Google Scholar]
  19. E.J. Dean and R. Glowinski, An augmented Lagrangian approach to the numerical solution of the Dirichlet problem for the elliptic Monge − Ampère equation in two dimensions. Electronic Transactions in Numerical Analysis 22 (2006) 71–96. [Google Scholar]
  20. E.J. Dean and R. Glowinski, Numerical methods for fully nonlinear elliptic equations of the Monge − Ampère type. Comput. Meth. Appl. Mech. Engrg. 195 (2006) 1344–1386. [CrossRef] [MathSciNet] [Google Scholar]
  21. E.J. Dean and R. Glowinski, On the numerical solution of the elliptic Monge − Ampère equation in dimension two: A least-squares approach, in Partial Differential Equations: Modeling and Numerical Simulation, vol. 16 of Comput. Methods Appl. Sci., edited by R. Glowinski and P. Neittaanmäki. Springer (2008) 43–63. [Google Scholar]
  22. E.J. Dean, R. Glowinski and T.W. Pan, Operator-splitting methods and applications to the direct numerical simulation of particulate flow and to the solution of the elliptic Monge − Ampère equation. in Control and Boundary Analysis, edited by J.P. Zolésio J. Cagnol, CRC Boca Raton, FLA (2005) 1–27. [Google Scholar]
  23. E.J. Dean, R. Glowinski and D. Trevas, An approximate factorization/least squares solution method for a mixed finite element approximation of the Cahn-Hilliard equation. Jpn J. Ind. Appl. Math. 13 (1996) 495–517. [CrossRef] [Google Scholar]
  24. X. Feng and M. Neilan, Mixed finite element methods for the fully nonlinear Monge − Ampère equation based on the vanishing moment method. SIAM J. Numer. Anal. 47 (2009) 1226–1250. [CrossRef] [MathSciNet] [Google Scholar]
  25. X. Feng and M. Neilan, Vanishing moment method and moment solutions of second order fully nonlinear partial differential equations. J. Sci. Comput. 38 (2009) 74–98. [CrossRef] [MathSciNet] [Google Scholar]
  26. B.D. Froese and A.M. Oberman, Convergent finite difference solvers for viscosity solutions of the elliptic Monge − Ampère equation in dimensions two and higher. SIAM J. Numer. Anal. 49 (2011) 1692–1715. [CrossRef] [MathSciNet] [Google Scholar]
  27. B.D. Froese and A.M. Oberman, Fast finite difference solvers for singular solutions of the elliptic Monge − Ampère equation. J. Comput. Phys. 230 (2011) 818–834. [CrossRef] [Google Scholar]
  28. C. Geuzaine and J.-F. Remacle, Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Meth. Eng. 79 (2009) 1309–1331. [Google Scholar]
  29. D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001). [Google Scholar]
  30. R. Glowinski, Finite Element Methods For Incompressible Viscous Flow, Handbook of Numerical Analysis, edited by P.G. Ciarlet, J.L. Lions. Elsevier, Amsterdam IX (2003) 3–1176. [Google Scholar]
  31. R. Glowinski, Numerical Methods for Nonlinear Variational Problems. 2nd edition, Springer-Verlag, New York, NY (2008). [Google Scholar]
  32. R. Glowinski, Numerical methods for fully nonlinear elliptic equations. in Invited Lectures, 6th Int. Congress on Industrial and Applied Mathematics, Zürich, Switzerland, 16-20 July 2007. EMS (2009) 155–192. [Google Scholar]
  33. R. Glowinski, E.J. Dean, G. Guidoboni, H.L. Juarez and T.W. Pan, Applications of operator-splitting methods to the direct numerical simulation of particulate and free surface flows and to the numerical solution of the two-dimensional Monge − Ampère equation. Jpn J. Ind. Appl. Math. 25 (2008) 1–63. [CrossRef] [MathSciNet] [Google Scholar]
  34. R. Glowinski, J.-L. Lions and J.W. He, Exact and Approximate Controllability for Distributed Parameter Systems: A Numerical Approach. Encyclopedia of Mathematics and its Applications. Cambridge University Press (2008). [Google Scholar]
  35. R. Glowinski, D. Marini and M. Vidrascu, Finite-element approximations and iterative solutions of a fourth-order elliptic variational inequality. IMA J. Numer. Anal. 4 (1984) 127–167. [CrossRef] [MathSciNet] [Google Scholar]
  36. R. Glowinski and O. Pironneau, Numerical methods for the first bi-harmonic equation and for the two-dimensional Stokes problem. SIAM Rev. 17 (1979) 167–212. [CrossRef] [MathSciNet] [Google Scholar]
  37. C.E. Gutiérrez, The MongeAmpère Equation. Birkhaüser, Boston (2001). [Google Scholar]
  38. T.J.R. Hughes, L. Franca and M. Balestra, A new finite element formulation for computational fluid dynamics: V. circumventing the Babuska-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolation. Comput. Methods Appl. Mech. Engrg. 59 (1986) 85–100. [CrossRef] [MathSciNet] [Google Scholar]
  39. H. Ishii and P.-L. Lions, Viscosity solutions of fully nonlinear second-order elliptic partial differential equations. J. Differ. Eq. 83 (1990) 26–78. [Google Scholar]
  40. G. Loeper and F. Rapetti, Numerical solution of the Monge − Ampère equation by a Newton’s algorithm. C. R. Math. Acad. Sci. Paris 340 (2005) 319–324. [CrossRef] [MathSciNet] [Google Scholar]
  41. B. Mohammadi, Optimal transport, shape optimization and global minimization. C. R. Acad Sci Paris, Ser. I 351 (2007) 591–596. [CrossRef] [Google Scholar]
  42. M. Neilan, A nonconforming Morley finite element method for the fully nonlinear Monge − Ampère equation. Numer. Math. 115 (2010) 371–394. [CrossRef] [MathSciNet] [Google Scholar]
  43. A. Oberman, Wide stencil finite difference schemes for the elliptic Monge − Ampère equations and functions of the eigenvalues of the Hessian. Discr. Contin. Dyn. Syst. B 10 (2008) 221–238. [Google Scholar]
  44. V.I. Oliker and L.D. Prussner, On the numerical solution of the equation Formula and its discretization, I. Numer. Math. 54 (1988) 271–293. [CrossRef] [MathSciNet] [Google Scholar]
  45. M. Picasso, F. Alauzet, H. Borouchaki and P.-L. George, A numerical study of some Hessian recovery techniques on isotropic and anisotropic meshes. SIAM J. Sci. Comput. 33 (2011) 1058–1076. [CrossRef] [Google Scholar]
  46. A.V. Pogorelov, MongeAmpère Equations of Elliptic Type. P. Noordhooff, Ltd, Groningen, Netherlands (1964). [Google Scholar]
  47. L. Reinhart, On the numerical analysis of the Von Kármán equation: mixed finite element approximation and continuation techniques. Numer. Math. 39 (1982) 371–404. [CrossRef] [MathSciNet] [Google Scholar]
  48. D.C. Sorensen and R. Glowinski, A quadratically constrained minimization problem arising from PDE of Monge − Ampère type. Numer. Algor. 53 (2010) 53–66. [CrossRef] [Google Scholar]
  49. A.N. Tychonoff, The regularization of incorrectly posed problems. Doklady Akad. Nauk. SSSR 153 (1963) 42–52. [Google Scholar]
  50. V. Zheligovsky, O. Podvigina and U. Frisch, The Monge − Ampère equation: Various forms and numerical solution. J. Comput. Phys. 229 (2010) 5043–5061. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.