Free Access
Volume 19, Number 3, July-September 2013
Page(s) 888 - 905
Published online 03 June 2013
  1. P.T. Abdellaoui and H. Heinich, Caracterisation d’une solution optimale au probleme de Monge − Kantorovich. Bull. Soc. Math. France 127 (1999) 429–443. [MathSciNet] [Google Scholar]
  2. N. Ahmad, H.K. Kim and R.J. McCann, Optimal transportation, topology and uniqueness. Bull. Math. Sci. 1 (2011) 13-32. [Google Scholar]
  3. L. Ambrosio, Lecture Notes on Transport Problems, in Mathematical Aspects of Evolving Interfaces. Lect. Notes Math. vol. 1812. Springer, Berlin (2003) 1–52. [Google Scholar]
  4. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, New York (2000). [Google Scholar]
  5. L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lect. Notes Math. ETH Zürich, Birkhäuser (2005). [Google Scholar]
  6. P. Bernard, Young measures, superposition and transport. Indiana Univ. Math. J. 57 (2008) 247–276. [CrossRef] [MathSciNet] [Google Scholar]
  7. G. Carlier and A. Lachapelle, A Planning Problem Combining Calculus of Variations and Optimal Transport. Appl. Math. Optim. 63 (2011) 1–9. [CrossRef] [MathSciNet] [Google Scholar]
  8. J.A. Cuesta-Albertos and A. Tuero-Diaz, A characterization for the Solution of the Monge − Kantorovich Mass Transference Problem. Statist. Probab. Lett. 16 (1993) 147–152. [CrossRef] [MathSciNet] [Google Scholar]
  9. I. Fonseca and G. Leoni, Modern Methods in the Calculus of Variations: Lp spaces. Springer (2007). [Google Scholar]
  10. W. Gangbo, The Monge Transfer Problem and its Applications. Contemp. Math. 226 (1999) 79–104. [CrossRef] [Google Scholar]
  11. J. Gonzalez-Hernandez and J. Gonzalez-Hernandez, Extreme Points of Sets of Randomized Strategies in Constrained Optimization and Control Problems. SIAM J. Optim. 15 (2005) 1085–1104. [CrossRef] [Google Scholar]
  12. J. Gonzalez-Hernandez, J. Rigoberto Gabriel and J. Gonzalez-Hernandez, On Solutions to the Mass Transfer Problem. SIAM J. Optim. 17 (2006) 485–499. [CrossRef] [Google Scholar]
  13. L. Granieri, Optimal Transport and Minimizing Measures. LAP Lambert Academic Publishing (2010). [Google Scholar]
  14. L. Granieri and F. Maddalena, A Metric Approach to Elastic reformations, preprint (2012), on [Google Scholar]
  15. V. Levin, Abstract Cyclical Monotonicity and Monge Solutions for the General Monge − Kantorovich Problem. Set-Valued Anal. 7 (1999) 7–32. [Google Scholar]
  16. M. McAsey and L. Mou, Optimal Locations and the Mass Transport Problem. Contemp. Math. 226 (1998) 131–148. [CrossRef] [Google Scholar]
  17. A. Pratelli, Existence of optimal transport maps and regularity of the transport density in mass transportation problems, Ph.D. Thesis, Scuola Normale Superiore, Pisa (2003). [Google Scholar]
  18. S.T. Rachev and L. Ruschendorf, Mass Transportation Problems, Probab. Appl. Springer-Verlag, New York I (1998). [Google Scholar]
  19. C. Villani, Topics in Mass Transportation. Grad. Stud. Math., vol. 58. AMS, Providence, RI (2004). [Google Scholar]
  20. C. Villani, Optimal Transport, Old and New. Springer (2009). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.