Free Access
Volume 20, Number 1, January-March 2014
Page(s) 42 - 77
Published online 03 September 2013
  1. E. Acerbi, G. Buttazzo and D. Percivale, A variational definition of the strain energy for an elastic string. J. Elast. 25 (1991) 137–148. [Google Scholar]
  2. L. Ambrosio and G. Dal Maso, On the relaxation in BV(Ω;Rm) of quasi–convex integrals. J. Funct. Anal. 109 (1992) 76–97. [CrossRef] [MathSciNet] [Google Scholar]
  3. L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. Oxford: Clarendon Press (2000). [Google Scholar]
  4. R.A. Adams, Sobolev Spaces. Academic Press, New York (1975). [Google Scholar]
  5. G. Anzellotti, Pairing between measures and bounded functions and compensated compactness. Ann. Mat. Pura Appl. 135 (1983) 293–318. [Google Scholar]
  6. A. Braides and I. Fonseca, Brittle thin films. Appl. Math. Optim. 44 (2001) 299–323. [CrossRef] [MathSciNet] [Google Scholar]
  7. J.F. Babadjian, E. Zappale and H. Zorgati, Dimensional reduction for energies with linear growth involving the bending moment. J. Math. Pures Appl. 90 (2008) 520–549. [CrossRef] [MathSciNet] [Google Scholar]
  8. M. Bocea and V. Nesi, Γ–convergence of power-law functionals, variational principles in L, and applications. SIAM J. Math. Anal. 39 (2008) 1550–1576. [CrossRef] [MathSciNet] [Google Scholar]
  9. H. Brezis, Analisi Funzionale. Liguori, Napoli (1986). [Google Scholar]
  10. G. Dal Maso, An introduction to Γ–convergence. Progress Nonlinear Differ. Equ. Appl. Birkhäuser Boston, Inc., Boston, MA (1983). [Google Scholar]
  11. R. De Arcangelis and C. Trombetti, On the relaxation of some classes of Dirichlet minimum problems. Commun. Partial Differ. Eqs. 24 (1999) 975–1006. [Google Scholar]
  12. E. De Giorgi, G. Letta, Une notion generale de convergence faible pour des fonctions croissantes d’ensemble. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 4 (1977) 61–99. [Google Scholar]
  13. F. Demengel, On Some Nonlinear Partial Differential Equations involving the 1–Laplacian and Critical Sobolev Exponent. ESAIM: COCV 4 (1999) 667–686. [CrossRef] [EDP Sciences] [Google Scholar]
  14. F. Demengel, Théorèmes d’existence pour des equations avec l’opérateur 1-Laplacien, première valeur propre pour − Δ1. (French) [Some existence results for partial differential equations involving the 1-Laplacian: first eigenvalue for − Δ1]. C. R. Math. Acad. Sci. Paris 334 (2002) 1071–1076. [CrossRef] [MathSciNet] [Google Scholar]
  15. F. Demengel, Functions locally almost 1–harmonic. Appl. Anal. 83 (2004) 865–896. [CrossRef] [MathSciNet] [Google Scholar]
  16. F. Demengel, On some nonlinear equation involving the 1–Laplacian and trace map inequalities. Nonlinear Anal. 47 (2002) 1151–1163. [CrossRef] [Google Scholar]
  17. I. Ekeland and R. Temam, Convex analysis and variational problems. North-Holland, Amsterdam (1976). [Google Scholar]
  18. I. Fonseca and S. Müller, Relaxation of quasiconvex functionals in BV(Ω,RN) for integrands f(x,u,u). Arch. Ration. Mech. Anal. 123 (1993) 1–49. [CrossRef] [MathSciNet] [Google Scholar]
  19. M. Giaquinta, G. Modica and J. Soucek, Functionals with linear growth in the Calculus of Variations. Comment. Math. Univ. Carolin. 20 (1979) 143–156. [MathSciNet] [Google Scholar]
  20. C. Goffman and J. Serrin, Sublinear functions of Measures and Variational Integrals. Duke Math. J. 31 (1964) 159–178. [CrossRef] [MathSciNet] [Google Scholar]
  21. E. Giusti, Minimal surfaces and functions of bounded variation. Birkhauser (1977). [Google Scholar]
  22. J. Heinonen, T. Kilpelainen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford, New York, Tokyo, Clarendon Press (1993). [Google Scholar]
  23. P. Juutinen, p–harmonic approximation of functions of least gradient. Indiana Univ. Math. J. 54 (2005) 1015–1029. [CrossRef] [MathSciNet] [Google Scholar]
  24. B. Kawhol, Variations on the p–Laplacian, in edited by D. Bonheure, P. Takac. Nonlinear Elliptic Partial Differ. Equ. Contemporary Math. 540 (2011) 35–46. [Google Scholar]
  25. R. Kohn and R. Temam, Dual spaces of Stresses and Strains, with Applications to Hencky Plasticity. Appl. Math. Optim. 10 (1983) 1–35. [CrossRef] [MathSciNet] [Google Scholar]
  26. H. Le Dret, and A. Raoult, The nonlinear membrane model as a variational limit of nonlinear three–dimensional elasticity. J. Math. Pures Appl. 74 (1995) 549–578. [Google Scholar]
  27. P. Lindqvist, On the Equation div( | ∇u | p − 2u) + λ | u | p − 2u = 0. Proc. Amer. Math. Soc. 109 (1990) 157–164. [MathSciNet] [Google Scholar]
  28. S. Monsurró and E. Zappale, On the relaxation and homogenization of some classes of variational problems with mixed boundary conditions. Rev. Roum. Math. Pures Appl. 51 (2006) 345–363. [Google Scholar]
  29. P. Sternberg, G. Williams and W. P. Ziemer, Existence, uniqueness, and regularity for functions of least gradient. J. Reine Angew. Math. 430 (1992) 3560. [Google Scholar]
  30. P. Sternberg and W.P. Ziemer, The Dirichlet problem for functions of least gradient. In Degenerate diffusions (Minneapolis, MN, 1991). In vol. 47 of IMA Vol. Math. Appl. Springer, New York (1993) 197–214. [Google Scholar]
  31. E. Zappale, On the homogenization of Dirichlet Minimum Problems. Ricerche di Matematica LI (2002) 61–92. [Google Scholar]
  32. W.P. Ziemer, Weakly differentiable functions. In vol. 120 of Graduate Texts in Math. Springer, Berlin (1989). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.