Free Access
Volume 20, Number 1, January-March 2014
Page(s) 23 - 41
Published online 29 August 2013
  1. T. Cazenave, Semilinear Schrödinger equations. AMS (2003). [Google Scholar]
  2. M. De Leo, On the existence of ground states for nonlinear Schrödinger–Poisson equation. Nonlinear Anal. 73 (2010) 979–986. [CrossRef] [MathSciNet] [Google Scholar]
  3. M. De Leo and D. Rial, Well-posedness and smoothing effect of nonlinear Schrödinger –Poisson equation. J. Math. Phys. 48 (2007) 093509-1,15. [CrossRef] [MathSciNet] [Google Scholar]
  4. G.K. Harkness, G.L. Oppo, E. Benkler, M. Kreuzer, R. Neubecker and T. Tschudi, Fourier space control in an LCLV feedback system. J. Optics B: Quantum and Semiclassical Optics 1 (1999) 177–182. [CrossRef] [Google Scholar]
  5. R. Illner, H. Lange and H. Teismann, A note on vol. 33 of the Exact Internal Control of Nonlinear Schrödinger Equations, in Quantum Control: Mathematical and Numerical Challenges, vol. 33 of CRM Proc. Lect. Notes (2003) 127–136. [Google Scholar]
  6. R. Illner, H. Lange and H. Teismann, Limitations on the Control of Schrödinger Equations. ESAIM: COCV 12 (2006) 615–635. [CrossRef] [EDP Sciences] [Google Scholar]
  7. T. Kato, Perturbation Theory for Linear Operators. Springer (1995). [Google Scholar]
  8. P. Markowich, C. Ringhofer and C. Schmeiser, Semiconductor equations. Springer, Vienna (1990). [Google Scholar]
  9. G.S. McDonald and W.J. Firth, Spatial solitary-wave optical memory. J. Optical Soc. America B 7 (1990) 1328–1335. [Google Scholar]
  10. M. Reed and B. Simon, Methods of Modern Math. Phys. Vol. II: Fourier Analysis, Self-Adjointness. Academic Press (1975). [Google Scholar]
  11. L. Rosier and B. Zhang, Exact boundary controllability of the nonlinear Schrödinger equation. J. Differ. Equ. 246 (2009) 4129–4153. [CrossRef] [Google Scholar]
  12. B. Simon, Phase space analysis of simple scattering systems: extensions of some work of Enss. Duke Math. J. 46 (1979) 119–168. [CrossRef] [MathSciNet] [Google Scholar]
  13. E. Zuazua, Remarks on the controllability of the Schrödinger equation, in Quantum Control: Mathematical and Numerical Challenges, vol. 33 of CRM Proc. Lect. Notes (2003) 193–211. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.