Free Access
Issue
ESAIM: COCV
Volume 20, Number 1, January-March 2014
Page(s) 95 - 115
DOI https://doi.org/10.1051/cocv/2013056
Published online 10 October 2013
  1. J.-P. Aubin, Viability theory. Birkhauser, Boston (1991). [Google Scholar]
  2. J.-P. Aubin and H. Frankowska, Set-Valued Analysis. Birkhauser, Boston (1990). [Google Scholar]
  3. M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhauser, Boston (1997). [Google Scholar]
  4. P. Cardaliaguet, M. Quincampoix and P. Saint-Pierre, Set-valued numerical analysis for optimal control and differential games. Stochastic and differential games: Theory and numerical methods. Annals of the international Society of Dynamic Games, edited by M. Bardi, T.E.S. Raghavan, T. Parthasarathy. Birkhauser, Boston (1999) 177–247. [Google Scholar]
  5. P. Cardaliaguet, M. Quincampoix and P. Saint-Pierre, Numerical schemes for discontinuous value functions of optimal control. Set-Valued Anal. 8 (2000) 111–126. [CrossRef] [MathSciNet] [Google Scholar]
  6. P. Cardaliaguet, M. Quincampoix and P. Saint-Pierre, Differential games through viability theory: Old and recent results. Advances in Dynamic Game Theory. Annals of the international Society of Dynamic Games, edited by S. Jorgensen, M. Quincampoix, T.L. Vincent, T. Basar. Birkhauser, Boston (2007) 3–35. [Google Scholar]
  7. V. Coverstone-Carroll, J.W. Hartmann and W.J. Mason, Optimal multi-objective low-thrust spacecraft trajectories. Comput. Methods Appl. Mech. Engrg. 186 (2000) 387–402. [CrossRef] [Google Scholar]
  8. A.J. Diaz de Leon and J.C. Seijo, A multi-criteria non-linear optimization model for the control and management of a tropical fishery. Mar. Resour. Econ. 7 (1992) 23–40. [Google Scholar]
  9. K. Deb, Multi-objective optimization using evolutionary algorithms. John Wiley and Sons, Chichister (2001). [Google Scholar]
  10. L. Doyen and P. Saint-Pierre, Scale of viability and minimal time of crisis. Set-Valued Anal. 5 (1997) 227–246. [CrossRef] [MathSciNet] [Google Scholar]
  11. P.J. Fleming and R.C. Purshouse, Evolutionary algorithms in control systems engineering: a survey. Control Engrg. Pract. 10 (2002) 1223–1241. [Google Scholar]
  12. A. Guigue, An approximation method for multiobjective optimal control problems application to a robotic trajectory planning problem. Submitted to Optim. Engrg. (2010). [Google Scholar]
  13. A. Guigue, Set-valued return function and generalized solutions for multiobjective optimal control problems (moc). Submitted to SIAM J. Control Optim. (2011). [Google Scholar]
  14. A. Guigue, M. Ahmadi, M.J.D. Hayes and R.G. Langlois, A discrete dynamic programming approximation to the multiobjective deterministic finite horizon optimal control problem. SIAM J. Control Optim. 48 (2009) 2581–2599. [CrossRef] [MathSciNet] [Google Scholar]
  15. A. Guigue, M. Ahmadi, R.G. Langlois and M.J.D. Hayes, Pareto optimality and multiobjective trajectory planning for a 7-dof redundant manipulator. IEEE Trans. Robotics 26 (2010) 1094–1099. [CrossRef] [Google Scholar]
  16. B.-Z. Guo and B. Sun, Numerical solution to the optimal feedback control of continuous casting process. J. Glob. Optim. 39 (1998) 171–195. [CrossRef] [Google Scholar]
  17. A. Kumar and A. Vladimirsky, An efficient method for multiobjective optimal control and optimal control subject to integral constraints. J. Comp. Math. 28 (2010) 517–551. [Google Scholar]
  18. S. Mardle and S. Pascoe, A review of applications of multiple-criteria decision-making techniques to fisheries. Mar. Resour. Econ. 14 (1998) 41–63. [Google Scholar]
  19. K.M. Miettinen, Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1999). [Google Scholar]
  20. Y. Sawaragi, H. Nakayama and T. Tanino, Theory of Multiobjective Optimization. Academic Press, Inc., Orlando (1985). [Google Scholar]
  21. T. Tanino, Sensitivity analysis in multiobjective optimization. J. Optim. Theory Appl. 56 (1988) 479–499. [CrossRef] [MathSciNet] [Google Scholar]
  22. R. Vinter, Optimal Control. Birkauser, Boston (2000). [Google Scholar]
  23. P.L. Yu, Cone convexity, cone extreme points, and nondominated solutions in decision problems with multiobjectives. J. Optim. Theory Appl. 14 (1974) 319–377. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.