Free Access
Issue |
ESAIM: COCV
Volume 20, Number 1, January-March 2014
|
|
---|---|---|
Page(s) | 174 - 189 | |
DOI | https://doi.org/10.1051/cocv/2013060 | |
Published online | 23 December 2013 |
- F. Alabau-Boussouira, Piecewise multiplier method and nonlinear integral inequalities for Petrowsky equation with nonlinear dissipation. J. Evol. Equ. 6 (2006) 95–112. [CrossRef] [MathSciNet] [Google Scholar]
- F. Alabau and V. Komornik, Boundary observability, controllability, and stabilization of linear elastodynamic systems. SIAM J. Control Optim. 37 (1999) 521–542. [Google Scholar]
- W. Arendt, C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups. Trans. Amer. Math. Soc. 306 (1988) 837–852. [CrossRef] [MathSciNet] [Google Scholar]
- C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization from the boundary. SIAM J. Control Optim. 30 (1992) 1024–1065. [Google Scholar]
- A. Bátkai, K.-J. Engel, J. Prüss and R. Schnaubelt, Polynomial stability of operator semigroups. Math. Nachr. 279 (2006) 1425–1440. [CrossRef] [MathSciNet] [Google Scholar]
- C.J.K. Batty and T. Duyckaerts, Non-uniform stability for bounded semi-groups on Banach spaces. J. Evol. Equ. 8 (2008) 765–780. [CrossRef] [MathSciNet] [Google Scholar]
- A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups. Math. Annal. 347 (2010) 455–478. [CrossRef] [MathSciNet] [Google Scholar]
- H. Brezis, Analyse fonctionnelle. Théorie et Applications. Masson, Paris (1983). [Google Scholar]
- N. Burq, Décroissance de l’énergie locale de l’équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel. Acta Math. 180 (1998) 1–29. [CrossRef] [MathSciNet] [Google Scholar]
- G. Chen, Control and stabilization for the wave equation in a bounded domain. SIAM J. Control Optim. 17 (1979) 66–81. [Google Scholar]
- G. Chen, S.A. Fulling, F.J. Narcowich and S. Sun, Exponential decay of energy of evolution equations with locally distributed damping. SIAM J. Appl. Math. 51 (1991) 266–301. [Google Scholar]
- G. Chen and D.L. Russell, A mathematical model for linear elastic systems with structural damping. Quart. Appl. Math. 39 (1981/1982) 433-454. [CrossRef] [Google Scholar]
- F. Conrad and B. Rao, Decay of solutions of the wave equation in a star-shaped domain with nonlinear boundary feedback. Asymptotic Anal. 7 (1993) 159–177. [Google Scholar]
- S. Ervedoza, E. Zuazua, Uniform exponential decay for viscous damped systems. Advances in phase space analysis of partial differential equations. Progr. Nonlinear Differential Equ. Appl. vol. 78. Birkhäuser Boston, Inc., Boston, MA (2009) 95–112. [Google Scholar]
- S. Ervedoza and E. Zuazua, Uniformly exponentially stable approximations for a class of damped systems. J. Math. Pures Appl. 91 (2009) 20–48. [Google Scholar]
- X. Fu, Longtime behavior of the hyperbolic equations with an arbitrary internal damping. Z. Angew. Math. Phys. 62 (2011) 667–680. [Google Scholar]
- X. Fu, Logarithmic decay of hyperbolic equations with arbitrary small boundary damping. Commun. Partial Differ. Equ. 34 (2009) 957–975. [CrossRef] [Google Scholar]
- R.B. Guzmán and M. Tucsnak, Energy decay estimates for the damped plate equation with a local degenerated dissipation. Systems Control Lett. 48 (2003) 191–197. [CrossRef] [MathSciNet] [Google Scholar]
- A. Haraux, Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps. Portugal. Math. 46 (1989) 245–258. [MathSciNet] [Google Scholar]
- F.L. Huang, Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces. Annal. Differ. Equ. 1 (1985) 43–56. [Google Scholar]
- V. Komornik, Rapid boundary stabilization of the wave equation. SIAM J. Control Optim. 29 (1991) 197–208. [Google Scholar]
- V. Komornik, Exact controllability and stabilization. The multiplier method, RAM. Masson and John Wiley, Paris (1994). [Google Scholar]
- V. Komornik and V. Boundary stabilization of isotropic elasticity systems. Control of partial differential equations and applications (Laredo, 1994), vol. 174. Lect. Notes Pure and Appl. Math. Dekker, New York (1996) 135–146. [Google Scholar]
- V. Komornik, Rapid boundary stabilization of linear distributed systems. SIAM J. Control Optim. 35 (1997) 1591–1613. [Google Scholar]
- V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation. J. Math. Pures Appl. 69 (1990) 33–54. [Google Scholar]
- J. Lagnese, Boundary stabilization of linear elastodynamic systems. SIAM J. Control Opt. 21 (1983) 968–984. [CrossRef] [MathSciNet] [Google Scholar]
- J. Lagnese, Decay of solutions of wave equations in a bounded region with boundary dissipation. J. Differ. Equ. 50 (1983) 163–182. [Google Scholar]
- J. Lagnese, Boundary Stabilization of Thin Plates, vol. 10. SIAM Stud. Appl. Math. Philadelphia, PA (1989). [Google Scholar]
- I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping. Differ. Integral Equ. 6 (1993) 507–533. [Google Scholar]
- I. Lasiecka and R. Triggiani, Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions. Appl. Math. Optim. 25 (1992) 189–224. [Google Scholar]
- G. Lebeau, Equation des ondes amorties. Algebraic and geometric methods in mathematical physics (Kaciveli, 1993). Math. Phys. Stud. Kluwer Acad. Publ., Dordrecht 19 (1996) 73–109. [Google Scholar]
- G. Lebeau and L. Robbiano, Stabilisation de l’équation des ondes par le bord. Duke Math. J. 86 (1997) 465–491. [CrossRef] [MathSciNet] [Google Scholar]
- J.-L. Lions, Contrôlabilité exacte, Perturbations et Stabilisation des Systèmes Distribués, vol. 8 of RMA. Masson, Paris (1988). [Google Scholar]
- K. Liu, Locally distributed control and damping for the conservative systems. SIAM J. Control and Opt. 35 (1997) 1574–1590. [CrossRef] [MathSciNet] [Google Scholar]
- Z. Liu and B. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation. Z. Angew. Math. Phys. 56 (2005), 630–644. [Google Scholar]
- K. Liu and B. Rao, Exponential stability for the wave equations with local Kelvin–Voigt damping. Z. Angew. Math. Phys. 57 (2006) 419–432. [Google Scholar]
- P. Martinez, Ph.D. Thesis, University of Strasbourg (1998). [Google Scholar]
- P. Martinez, Boundary stabilization of the wave equation in almost star-shaped domains. SIAM J. Control Optim. 37 (1999) 673–694. [Google Scholar]
- M. Nakao, Decay of solutions of the wave equation with a local degenerate dissipation. Israel J. Math. 95 (1996) 25–42. [CrossRef] [MathSciNet] [Google Scholar]
- A. Osses, A rotated multiplier applied to the controllability of waves, elasticity, and tangential Stokes control. SIAM J. Control Optim. 40 (2001) 777–800. [Google Scholar]
- A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, vol. 44 of Appl. Math. Sci. Springer-Verlag, New York (1983). [Google Scholar]
- K. D. Phung, Polynomial decay rate for the dissipative wave equation. J. Differ. Equ. 240 (2007) 92–124. [Google Scholar]
- K. D. Phung, Boundary stabilization for the wave equation in a bounded cylindrical domain. Discrete Contin. Dyn. Syst. 20 (2008) 1057–1093. [CrossRef] [MathSciNet] [Google Scholar]
- J. Prüss, On the spectrum of C0-semigroups. Trans. Amer. Math. Soc. 284 (1984) 847–857. [Google Scholar]
- J.P. Quinn, D.L. Russell, Asymptotic stability and energy decay rates for solutions of hyperbolic equations with boundary damping. Proc. Roy. Soc. Edinburgh Sect. A 77 (1977) 97–127. [MathSciNet] [Google Scholar]
- D.L. Russell, Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions. SIAM Rev. 20 (1978) 639–739. [CrossRef] [MathSciNet] [Google Scholar]
- L.R. Tcheugoué Tébou, Sur la stabilisation de l’équation des ondes en dimension 2. C. R. Acad. Sci. Paris Ser. I Math. 319 (1994) 585–588. [MathSciNet] [Google Scholar]
- L.R. Tcheugoué Tébou, On the stabilization of the wave and linear elasticity equations in 2-D. Panamer. Math. J. 6 (1996) 41–55. [Google Scholar]
- L.R. Tcheugoué Tébou, On the decay estimates for the wave equation with a local degenerate or nondegenerate dissipation. Portugal. Math. 55 (1998) 293–306. [Google Scholar]
- L.R. Tcheugoué Tébou, Stabilization of the wave equation with localized nonlinear damping J.D.E. 145 (1998) 502–524. [CrossRef] [MathSciNet] [Google Scholar]
- L.R. Tcheugoué Tébou, Well-posedness and energy decay estimates for the damped wave equation with Lr localizing coefficient, Commun. in P.D.E. 23 (1998) 1839–1855. [Google Scholar]
- L.R. Tcheugoué Tébou, Energy decay estimates for the damped Euler–Bernoulli equation with an unbounded localizing coefficient. Portugal. Math. 61 (2004) 375–391. [Google Scholar]
- L.R. Tcheugoué Tébou, On the stabilization of dynamic elasticity equations with unbounded locally distributed dissipation. Differ. Integral Equ. 19 (2006) 785–798. [Google Scholar]
- L. Tebou, Stabilization of the elastodynamic equations with a degenerate locally distributed dissipation. Syst. Control Lett. 56 (2007) 538–545. [Google Scholar]
- L. Tebou, Well-posedness and stabilization of an Euler–Bernoulli equation with a localized nonlinear dissipation involving the p-Laplacian. DCDS A 32 (2012) 2315–2337. [CrossRef] [Google Scholar]
- L.R. Tcheugoué Tébou and E. Zuazua, Uniform exponential long time decay for the space finite differences semi-discretization of a locally damped wave equation via an artificial numerical viscosity. Numerische Mathematik 95 (2003) 563–598. [Google Scholar]
- L.T. Tebou and E. Zuazua, Uniform boundary stabilization of the finite differences space discretization of the 1 − d wave equation. Adv. Comput. Math. 26 (2007) 337–365. [Google Scholar]
- M. Tucsnak, Semi-internal stabilization for a non-linear Bernoulli-Euler equation. Math. Methods Appl. Sci. 19 (1996) 897–907. [Google Scholar]
- A. Wyler, Stability of wave equations with dissipative boundary conditions in a bounded domain. Differential Integral Equ. 7 (1994) 345–366. [Google Scholar]
- E. Zuazua, Robustesse du feedback de stabilisation par contrôle frontière. C. R. Acad. Sci. Paris Ser. I Math. 307 (1988) 587–591. [Google Scholar]
- E. Zuazua, Uniform stabilization of the wave equation by nonlinear boundary feedback. SIAM J. Control Optim. 28 (1990) 466–477. [Google Scholar]
- E. Zuazua, Exponential decay for the semilinear wave equation with locally distributed damping. Commun. P.D.E. 15 (1990) 205–235. [Google Scholar]
- E. Zuazua, Exponential decay for the semilinear wave equation with localized damping in unbounded domains. J. Math. Pures. Appl. 70 (1991) 513–529. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.