Free Access
Issue
ESAIM: COCV
Volume 20, Number 2, April-June 2014
Page(s) 339 - 361
DOI https://doi.org/10.1051/cocv/2013066
Published online 06 February 2014
  1. F. Alabau-Boussouira, Indirect boundary stabilization of weakly coupled hyperbolic systems. SIAM J. Control Optim. 41 (2002) 511–541. [CrossRef] [MathSciNet] [Google Scholar]
  2. F. Alabau-Boussouira, A two-level energy method for indirect boundary observability and controllability of weakly coupled hyperbolic systems. SIAM J. Control Optim. 42 (2003) 871–906. [Google Scholar]
  3. F. Alabau-Boussouira, M. Léautaud, Indirect stabilization of locally coupled wave-type systems. ESAIM: COCV 18 (2012) 548–582. [CrossRef] [EDP Sciences] [Google Scholar]
  4. H. Fujisaka and T. Yamada, Stability theory of synchronized motion in coupled-oscillator systems. Progress Theoret. Phys. 69 (1983) 32–47. [Google Scholar]
  5. M. Gugat, Optimal boundary control in flood management, Control of Coupled Partial Differential Equations, edited by K. Kunisch, J. Sprekels, G. Leugering and F. Tröltzsch, vol. 155 of Int. Ser. Numer. Math., Birkhäuser Verlag, Basel/Switzerland (2007) 69–94. [Google Scholar]
  6. Long Hu, Fanqiong Ji and Ke Wang, Exact boundary controllability and exact boundary observability for a coupled system of quasilinear wave equations. Chin. Ann. Math. B 34 (2013) 479–490. [CrossRef] [Google Scholar]
  7. Ch. Huygens, Œuvres Complètes, vol. 15, edited by S. and B.V. Zeitlinger, Amsterdam (1967). [Google Scholar]
  8. Tatsien Li and Yi Jin, Semi-global C1 solution to the mixed initial-boundary value problem for quasilinear hyperbolic systems. Chin. Ann. Math. B 22 (2001) 325–336. [CrossRef] [Google Scholar]
  9. Tatsien Li, Exact boundary observability for 1-D quasilinear wave equations. Math. Meth. Appl. Sci. 29 (2006) 1543–1553. [CrossRef] [Google Scholar]
  10. Tatsien Li, Controllability and Observability for Quasilinear Hyperbolic Systems, vol. 3 of AIMS Ser. Appl. Math. AIMS and Higher Education Press (2010). [Google Scholar]
  11. Tatsien Li and Bopeng Rao, Strong (weak) exact controllability and strong (weak) exact observability for quasilinear hyperbolic systems. Chin. Annal. Math. B 31 (2010) 723–742. [Google Scholar]
  12. Tatsien Li and Bopeng Rao, Asymptotic controllability for linear hyperbolic systems. Asymp. Anal. 72 (2011) 169–187. [Google Scholar]
  13. Tatsien Li and Bopeng Rao, Exact synchronization for a coupled system of wave equations with Dirichlet boundary controls. Chin. Annal. Math. B 34 (2013) 139–160. [Google Scholar]
  14. J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilization de Systèmes Distribués, Vol. 1, Masson (1988). [Google Scholar]
  15. J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems. SIAM Review 30 (1988) 1–68. [Google Scholar]
  16. D.L. Russell, Controllability and stabilization theory for linear partial differential equations: Recent progress and open questions. SIAM Review 20 (1978) 639–739. [CrossRef] [MathSciNet] [Google Scholar]
  17. S. Strogatz, SYNC: The Emerging Science of Spontaneous Order, THEIA, New York (2003). [Google Scholar]
  18. Ke Wang, Exact boundary controllability for a kind of second-order quasilinear hyperbolic systems. Chin. Ann. Math. B 32 (2011) 803–822. [CrossRef] [Google Scholar]
  19. Chai Wah Wu, Synchronization in Complex Networks of Nonlinear Dynamical Systems. World Scientific (2007). [Google Scholar]
  20. Lixin Yu, Exact boundary controllability for a kind of second-order quasilinear hyperbolic systems and its applications. Math. Meth. Appl. Sci. 33 (2010) 273–286. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.