Free Access
Issue |
ESAIM: COCV
Volume 20, Number 2, April-June 2014
|
|
---|---|---|
Page(s) | 362 - 388 | |
DOI | https://doi.org/10.1051/cocv/2013067 | |
Published online | 03 March 2014 |
- A. Alvino, G. Trombetti and P.-L. Lions, On optimization problems with prescribed rearrangements. Nonlinear Anal. 13 (1989) 185–220. [CrossRef] [MathSciNet] [Google Scholar]
- P.R. Beesack, Hardy’s inequality and its extensions. Pacific J. Math. 11 (1961) 39–61. [CrossRef] [MathSciNet] [Google Scholar]
- C. Conca, A. Laurain and R. Mahadevan, Minimization of the ground state for two phase conductors in low contrast regime. SIAM J. Appl. Math. 72 (2012) 1238–1259. [CrossRef] [MathSciNet] [Google Scholar]
- C. Conca, R. Mahadevan and L. Sanz, An extremal eigenvalue problem for a two-phase conductor in a ball. Appl. Math. Optim. 60 (2009) 173–184. [CrossRef] [MathSciNet] [Google Scholar]
- C. Conca, R. Mahadevan and L. Sanz, Shape derivative for a two-phase eigenvalue problem and optimal configurations in a ball, in vol. 27 of CANUM 2008, ESAIM Proc. EDP Sciences, Les Ulis (2009) 311–321 [Google Scholar]
- S. Cox and R. Lipton, Extremal eigenvalue problems for two-phase conductors. Arch. Rational Mech. Anal. 136 (1996) 101–117. [Google Scholar]
- M. Dambrine and D. Kateb, On the shape sensitivity of the first Dirichlet eigenvalue for two-phase problems. Appl. Math. Optim. 63 (2011) 45–74. [CrossRef] [MathSciNet] [Google Scholar]
- G.H. Hardy, J.E. Littlewood and G. Pólya, Inequalities, Cambridge Mathematical Library. Cambridge University Press, Cambridge (1988). Reprint of the 1952 edition. [Google Scholar]
- A. Henrot, Extremum problems for eigenvalues of elliptic operators, Frontiers in Mathematics. Birkhäuser Verlag, Basel (2006). [Google Scholar]
- M.G. Krein, On certain problems on the maximum and minimum of characteristic values and on the Lyapunov zones of stability. Amer. Math. Soc. Transl. 1 (1955) 163–187. [MathSciNet] [Google Scholar]
- M.G. Krein and M.A. Rutman, Linear operators leaving invariant a cone in a banach space. Amer. Math. Soc. Transl. (1950) 26. [Google Scholar]
- F Rellich, Perturbation Theory of Eigenvalue Problems, Notes on mathematics and its applications. Gordon and Breach, New York (1969). [Google Scholar]
- G.N. Watson, A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge, England (1944). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.