Free Access
Issue
ESAIM: COCV
Volume 20, Number 2, April-June 2014
Page(s) 547 - 575
DOI https://doi.org/10.1051/cocv/2013075
Published online 28 March 2014
  1. C. Bardos, G. Lebeau and J. Rauch, Un exemple d’utilisation des notions de propagation pour le contrôle et la stabilisation de problèmes hyperboliques. Nonlinear hyperbolic equations in applied sciences. Rend. Sem. Mat. Univ. Politec. Torino, (Special Issue) 1988 (1989) 11–31. [Google Scholar]
  2. C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim. 30 (1992) 1024–1065. [Google Scholar]
  3. N. Burq, Mesures semi-classiques et mesures de défaut. Séminaire Bourbaki, Vol. 1996/97. Astérisque, (245): Exp. No. 826 (1997) 167–195. [Google Scholar]
  4. N. Burq and P. Gérard, Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes. C. R. Acad. Sci. Paris Sér. I Math. 325 (1997) 749–752. [CrossRef] [MathSciNet] [Google Scholar]
  5. N. Burq and M. Zworski, Geometric control in the presence of a black box. J. Amer. Math. Soc. 17 (2004) 443–471. [CrossRef] [MathSciNet] [Google Scholar]
  6. C. Conca, J. Planchard and M. Vanninathan, Fluids and periodic structures, vol. 38 of RAM: Res. Appl. Math. John Wiley & Sons Ltd., Chichester (1995). [Google Scholar]
  7. B. Dehman and G. Lebeau, Analysis of the HUM control operator and exact controllability for semilinear waves in uniform time. SIAM J. Control Optim. 48 (2009) 521–550. [CrossRef] [MathSciNet] [Google Scholar]
  8. S. Ervedoza, Spectral conditions for admissibility and observability of wave systems: applications to finite element schemes. Numer. Math. 113 (2009) 377–415. [CrossRef] [MathSciNet] [Google Scholar]
  9. S. Ervedoza and E. Zuazua. A systematic method for building smooth controls for smooth data. Discrete Contin. Dyn. Syst. Ser. B 14 (2010) 1375–1401. [Google Scholar]
  10. S. Ervedoza and E. Zuazua, The wave equation: Control and numerics. Control Partial Differ. Eqs. Lect. Notes Math., CIME Subseries. edited by P.M. Cannarsa and J.M. Coron. Springer Verlag (2011). [Google Scholar]
  11. P. Gérard, Microlocal defect measures. Commun. Partial Differ. Eqs. 16 (1991) 1761–1794. [CrossRef] [Google Scholar]
  12. L. Hörmander, The analysis of linear partial differential operators. I, Distribution theory and Fourier analysis. Vol. 256 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2nd edn. (1990). [Google Scholar]
  13. J.-L. Lions, Contrôlabilité exacte, Stabilisation et Perturbations de Systèmes Distribués. Tome 1. Contrôlabilité exacte, vol. 8 RMA. Masson (1988). [Google Scholar]
  14. J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems. SIAM Review 30 (1988) 1–68. [Google Scholar]
  15. R.B. Melrose and J. Sjöstrand, Singularities of boundary value problems. II. Commun. Pure Appl. Math. 35 (1982) 129–168. [CrossRef] [MathSciNet] [Google Scholar]
  16. L. Miller, Controllability cost of conservative systems: resolvent condition and transmutation. J. Funct. Anal. 218 (2005) 425–444. [CrossRef] [MathSciNet] [Google Scholar]
  17. J.V. Ralston, Solutions of the wave equation with localized energy. Commun. Pure Appl. Math. 22 (1969) 807–823. [CrossRef] [MathSciNet] [Google Scholar]
  18. J.-P. Raymond and M. Vanninathan, Exact controllability in fluid-solid structure: the Helmholtz model. ESAIM: COCV 11 (2005) 180–203. [CrossRef] [EDP Sciences] [Google Scholar]
  19. J.-P. Raymond and M. Vanninathan, Null controllability in a fluid-solid structure model. J. Differ. Eqs. 248 (2010) 1826–1865. [CrossRef] [Google Scholar]
  20. M. Tucsnak and M. Vanninathan, Locally distributed control for a model of fluid-structure interaction. Systems Control Lett. 58 (2009) 547–552. [CrossRef] [MathSciNet] [Google Scholar]
  21. M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, vol. XI of Birkäuser Advanced Texts. Springer (2009). [Google Scholar]
  22. E. Zuazua, Exact controllability for semilinear wave equations in one space dimension. Ann. Inst. Henri Poincaré Anal. Non Linéaire 10 (1993) 109–129. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.