Free Access
Issue
ESAIM: COCV
Volume 20, Number 2, April-June 2014
Page(s) 576 - 611
DOI https://doi.org/10.1051/cocv/2013076
Published online 27 March 2014
  1. G. Allaire, Shape optimization by the homogenization method. Springer Verlag, New York (2001). [Google Scholar]
  2. G. Allaire, Conception optimale de structures, vol. 58 of Mathématiques et Applications. Springer, Heidelberg (2006). [Google Scholar]
  3. G. Allaire and C. Castro, A new approach for the optimal distribution of assemblies in a nuclear reactor. Numerische Mathematik 89 (2001) 1–29. [CrossRef] [MathSciNet] [Google Scholar]
  4. G. Allaire, F. Jouve and A.M. Toader, Structural optimization using shape sensitivity analysis and a level-set method. J. Comput. Phys. 194 (2004) 363–393. [CrossRef] [Google Scholar]
  5. G. Allaire, F. Jouve and N. Van Goethem, Damage evolution in brittle materials by shape and topological sensitivity analysis. J. Comput. Phys. 230 (2011) 5010–5044. [CrossRef] [Google Scholar]
  6. G. Allaire and S. Gutierrez, Optimal Design in Small Amplitude Homogenization. ESAIM: M2AN 41 (2007) 543–574. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  7. L. Ambrosio, Lecture notes on geometric evolution problems, distance function and viscosity solutions, in Calculus of Variations and Partial Differential Equations, edited by G. Buttazo, A. Marino and M.K.V. Murthy. Springer (1999) 5–93. [Google Scholar]
  8. L. Ambrosio and G. Buttazzo, An optimal design problem with perimeter penalization. Calc. Var. 1 (1993) 55–69. [Google Scholar]
  9. M. Bendsoe and O. Sigmund, Topology Optimization. Theory, Methods, and Applications. Springer Verlag, New York (2003). [Google Scholar]
  10. Ch. Bernardi and O. Pironneau, Sensitivity of Darcy’s law to discontinuities. Chinese Ann. Math. Ser. B 24 (2003) 205–214. [CrossRef] [MathSciNet] [Google Scholar]
  11. H.-J. Butt, K. Graf and M. Kappl, Physics and Chemistry of Interfaces. Wiley (2003). [Google Scholar]
  12. P. Cannarsa and P. Cardaliaguet, Representation of equilibrium solutions to the table problem for growing sandpiles. J. Eur. Math. Soc. 6 (2004) 1–30. [Google Scholar]
  13. J. Céa, Conception optimale ou identification de formes, calcul rapide de la dérivée directionnelle de la fonction coût. Math. Model. Numer. 20 (1986) 371–420. [Google Scholar]
  14. A. Chambolle, A density result in two-dimensional linearized elasticity and applications. Arch. Ration. Mech. Anal. 167 (2003) 211–233. [Google Scholar]
  15. I. Chavel, Riemannian Geometry, a modern introduction, 2nd Edn. Cambridge University Press (2006). [Google Scholar]
  16. D. Chenais, On the existence of a solution in a domain identification problem. J. Math. Anal. Appl. 52 (1975) 189–289. [CrossRef] [MathSciNet] [Google Scholar]
  17. A. Cherkaev, Variational Methods for Structural Optimization. Springer, New York (2000). [Google Scholar]
  18. C. Dapogny, Ph.D. thesis, Université Pierre et Marie Curie. In preparation. [Google Scholar]
  19. F. de Gournay, Velocity extension for the level-set method and multiple eigenvalues in shape optimization. SIAM J. Control Optim. 45 (2006) 343–367. [Google Scholar]
  20. G. Delgado, Ph.D. thesis, Ecole Polytechnique. In preparation. [Google Scholar]
  21. M.C. Delfour and J.-P. Zolesio, Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization, 2nd edition. SIAM, Philadelphia (2011). [Google Scholar]
  22. M.C. Delfour and J.-P. Zolesio, Shape identification via metrics constructed from the oriented distance function. Control and Cybernetics 34 (2005) 137–164. [MathSciNet] [Google Scholar]
  23. L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions. CRC Press (1992). [Google Scholar]
  24. H. Federer, Curvature Measures. Trans. Amer. Math. Soc. 93 (1959) 418–491. [CrossRef] [MathSciNet] [Google Scholar]
  25. J. Gomes and O. Faugeras, Reconciling distance functions and level sets, Scale-Space Theories in Computer Vision. Springer (1999) 70–81. [Google Scholar]
  26. J. Haslinger and J. Dvorak, Optimum composite material design. RAIRO M2AN 29 (1995) 657–686. [Google Scholar]
  27. A. Henrot and M. Pierre, Variation et optimisation de formes, une analyse géométrique, vol. 48 of Mathématiques et Applications. Springer, Heidelberg (2005). [Google Scholar]
  28. F. Hettlich and W. Rundell, The determination of a discontinuity in a conductivity from a single boundary measurement. Inverse Problems 14 (1998) 67–82. [CrossRef] [MathSciNet] [Google Scholar]
  29. A.L. Karchevsky, Reconstruction of pressure velocities and boundaries of thin layers in thinly-stratified layers. J. Inverse Ill-Posed Probl. 18 (2010) 371–388. [CrossRef] [MathSciNet] [Google Scholar]
  30. R. Lipton, Design of functionally graded composite structures in the presence of stress constraints. Int. J. Solids Structures 39 (2002) 2575–2586. [CrossRef] [Google Scholar]
  31. C. Mantegazza and A.C. Menucci, Hamilton–Jacobi Equations and Distance Functions on Riemannian Manifolds. Appl. Math. Optim. 47 (2002) 1–25. [CrossRef] [Google Scholar]
  32. W. Mc Lean, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000). [Google Scholar]
  33. Y. Mei and X. Wang, A level set method for structural topology optimization with multi-constraints and multi-materials. Acta Mechanica Sinica 20 (2004). [Google Scholar]
  34. Y. Mei and X. Wang, A level set method for structural topology optimization and its applications. Adv. Eng. software 35 (2004) 415–441. [CrossRef] [Google Scholar]
  35. G. Milton, The theory of composites. Cambridge University Press (2001). [Google Scholar]
  36. F. Murat and J. Simon, Sur le contrôle par un domaine géométrique. Technical Report RR-76015. Laboratoire d’Analyse Numérique (1976). [Google Scholar]
  37. J. Nocedal and S.J. Wright, Numerical optimization. Springer Science+ Business Media (2006). [Google Scholar]
  38. ZH.O. Oralbekova, K.T. Iskakov and A.L. Karchevsky, Existence of the residual functional derivative with respect to a coordinate of gap point of medium, to appear in Appl. Comput. Math. [Google Scholar]
  39. J.M. Ortega and W.C. Rheinboldt, On discretization and differentiation of operators with application to Newton’s method. SIAM J. Numer. Anal. 3 (1966) 143–156. [CrossRef] [Google Scholar]
  40. S.J. Osher and J.A. Sethian, Front propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 78 (1988) 12–49. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  41. O. Pantz, Sensibilité de l’équation de la chaleur aux sauts de conductivité. C. R. Acad. Sci. Paris, Ser. I 341 (2005) 333–337. [Google Scholar]
  42. O. Pironneau, F. Hecht and A. Le Hyaric, FreeFem++ version 2.15-1. Available on http://www.freefem.org/ff++/. [Google Scholar]
  43. J.A. Sethian, Level-Set Methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision and materials science. Cambridge University Press (1999). [Google Scholar]
  44. O. Sigmund and S. Torquato, Design of materials with extreme thermal expansion using a three-phase topology optimization method. J. Mech. Phys. Solids 45 (1997) 1037–1067. [CrossRef] [MathSciNet] [Google Scholar]
  45. O. Sigmund, Design of multiphysics actuators using topology optimization-part ii: Two-material structures. Comput. Methods Appl. Mech. Eng. 190 (2001) 6605–6627. [CrossRef] [Google Scholar]
  46. N. Sukumar, D.L. Chopp, N. Moes and T. Belytschko, Modeling holes and inclusions by level sets in the extended finite element method. Comput. Methods Appl. Mech. Eng. 190 (2001) 6183–6200. [Google Scholar]
  47. S. Suresh, A. Mortensen, Fundamentals of functionally graded materials. London, Institute of Materials (1998). [Google Scholar]
  48. V. Šverak, On optimal shape design. J. Math. Pures Appl. 72 (1993) 537–551. [Google Scholar]
  49. C.C. Swan, I. Kosaka, Voigt-Reuss topology optimization for structures with linear elastic material behaviors. Int. J. Numer. Methods Eng. 40 (1997). [Google Scholar]
  50. L. Tarta, The general theory of homogenization. A personalized introduction, vol. 7 of Lecture Notes of the Unione Matematica Italiana. Springer-Verlag, Berlin, UMI, Bologna (2009). [Google Scholar]
  51. R. Tilley, Understanding Solids: The Science of Materials. Wiley (2004). [Google Scholar]
  52. N. Vermaak, G. Michailidis, Y. Brechet, G. Allaire, G. Parry and R. Estevez, Material Interface Effects on the Topology Optimization of Multi-Phase Structures Using A Level Set Method. submitted. [Google Scholar]
  53. L.A. Vese and T.F. Chan, A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vision 50 (2002) 271–293. [Google Scholar]
  54. M. Wang, S. Chen, X. Wang and Y. Mei, Design of Multimaterial Compliant Mechanisms Using Level-Set Methods. J. Mech. Des. 127 (2005) 941–956. [CrossRef] [Google Scholar]
  55. M. Wang and X. Wang, Color level sets: a multi-phase method for structural topology optimization with multiple materials. Comput. Methods Appl. Mech. Eng. 193 (2004) 469–496. [CrossRef] [Google Scholar]
  56. M. Wang and X. Wang, A level-set based variational method for design and optimization of heterogeneous objetcs. Compututer-Aided Design 37 (2005) 321–337. [CrossRef] [Google Scholar]
  57. L. Yin and G.K. Ananthasuresh, Topology optimization of compliant mechanisms with multiple materials using a peak function material interpolation scheme. Struct. Multidiscip. Optim. 23 (2001) 49–62. [CrossRef] [Google Scholar]
  58. S. Zhou and Q. Li, Computational design of multi-phase microstructural materials for extremal conductivity. Comput. Mater. Sci. 43 (2008) 549–564. [CrossRef] [Google Scholar]
  59. S. Zhou and M.Y. Wang, Multimaterial structural optimization with a generalized Cahn–Hilliard model of multiphase transition. Struct. Multidisc. Optim. 33 (2007) 89–111. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.